Wednesday, September 3, 2025
HomeLanguagesPython – Johnson SB Distribution in Statistics

Python – Johnson SB Distribution in Statistics

scipy.stats.johnsonsb() is a Johnson SB continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Johnson SB continuous random variable

Code #1 : Creating Johnson SB continuous random variable




# importing library
  
from scipy.stats import johnsonsb  
    
numargs = johnsonsb.numargs 
a, b = 4.32, 3.18
rv = johnsonsb(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D50286C8


Code #2 : Johnson SB continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = johnsonsb.rvs(a, b, scale = 2, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
R = johnsonsb.pdf(a, b, quantile, loc = 0, scale = 1
print ("\nProbability Distribution : \n", R)  


Output :

Random Variates : 
 [0.42212956 0.60876766 0.35494705 0.42892958 0.25316345 0.51872977
 0.2355019  0.44657975 0.54971277 0.36683771]

Probability Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = johnsonsb .pdf(x, 1, 3
y2 = johnsonsb .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32260 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6625 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11854 POSTS0 COMMENTS
Shaida Kate Naidoo
6746 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6694 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS