Given two lists, the task is to write a Python program to extract all the strings which are possible substring to any of strings in another list.
Example:
Input : test_list1 = [“GeeksforLazyroar”, “best”, “for”, “Lazyroar”], test_list2 = [“Geeks”, “win”, “or”, “learn”]
Output : [‘Geeks’, ‘or’]
Explanation : “Geeks” occurs in “GeeksforLazyroar string as substring.
Input : test_list1 = [“neveropen”, “best”, “4”, “Lazyroar”], test_list2 = [“Geeks”, “win”, “or”, “learn”]
Output : []
Explanation : No substrings found.
Method #1: Using list comprehension
In this, we perform task of using nested loop and testing using list comprehension, extracting the string if its part of any substring of other list.
Python3
# Python3 code to demonstrate working of # Substring Intersections # Using list comprehension # initializing lists test_list1 = [ "GeeksforLazyroar" , "best" , "for" , "Lazyroar" ] test_list2 = [ "Geeks" , "win" , "or" , "learn" ] # printing original lists print ( "The original list 1 is : " + str (test_list1)) print ( "The original list 2 is : " + str (test_list2)) # using list comprehension for nested loops res = list ( set ([ele1 for sub1 in test_list1 for ele1 in test_list2 if ele1 in sub1])) # printing result print ( "Substrings Intersections : " + str (res)) |
The original list 1 is : ['GeeksforLazyroar', 'best', 'for', 'Lazyroar'] The original list 2 is : ['Geeks', 'win', 'or', 'learn'] Substrings Intersections : ['or', 'Geeks']
Time Complexity: O(n)
Auxiliary Space: O(1)
Method #2: Using any() + generator expression
In this, any() is used to check for substring matching in any of the strings from the string list to be matched in.
Python3
# Python3 code to demonstrate working of # Substring Intersections # Using any() + generator expression # initializing lists test_list1 = [ "GeeksforLazyroar" , "best" , "for" , "Lazyroar" ] test_list2 = [ "Geeks" , "win" , "or" , "learn" ] # printing original lists print ( "The original list 1 is : " + str (test_list1)) print ( "The original list 2 is : " + str (test_list2)) # any() returns the string after match in any string # as Substring res = [ele2 for ele2 in test_list2 if any (ele2 in ele1 for ele1 in test_list1)] # printing result print ( "Substrings Intersections : " + str (res)) |
The original list 1 is : ['GeeksforLazyroar', 'best', 'for', 'Lazyroar'] The original list 2 is : ['Geeks', 'win', 'or', 'learn'] Substrings Intersections : ['Geeks', 'or']
Time Complexity: O(n2)
Space Complexity: O(n)
Method #3: Using find() method
Python3
# Python3 code to demonstrate working of # Substring Intersections # initializing lists test_list1 = [ "GeeksforLazyroar" , "best" , "for" , "Lazyroar" ] test_list2 = [ "Geeks" , "win" , "or" , "learn" ] # printing original lists print ( "The original list 1 is : " + str (test_list1)) print ( "The original list 2 is : " + str (test_list2)) res = [] for i in test_list2: for j in test_list1: if (j.find(i)! = - 1 and i not in res): res.append(i) # printing result print ( "Substrings Intersections : " + str (res)) |
The original list 1 is : ['GeeksforLazyroar', 'best', 'for', 'Lazyroar'] The original list 2 is : ['Geeks', 'win', 'or', 'learn'] Substrings Intersections : ['Geeks', 'or']
Time Complexity: O(n*n)
Auxiliary Space: O(n)
Method#4: Using Recursive method.
we define a recursive function substring_intersections() that takes in two lists of strings as input. It first checks if the second list list2 is empty. If it is, the function returns an empty list [].
If the second list list2 is not empty, the function checks if the first string in list2 is a substring of any element in the first list list1. If it is, it appends it to the result list res.
The function then recursively calls itself with the first element of list2 removed and the same first list list1. The result of this recursive call is concatenated with the result list res.
Finally, the function returns the result list res.
Python3
# printing resultdef substring_intersections(list1, list2): # Substring Intersections def substring_intersections(list1, list2): if not list2: return [] res = [] for ele1 in list1: if list2[ 0 ] in ele1: res.append(list2[ 0 ]) break res + = substring_intersections(list1, list2[ 1 :]) return res # initializing lists test_list1 = [ "GeeksforLazyroar" , "best" , "for" , "Lazyroar" ] test_list2 = [ "Geeks" , "win" , "or" , "learn" ] # printing original lists print ( "The original list 1 is : " + str (test_list1)) print ( "The original list 2 is : " + str (test_list2)) res = substring_intersections(test_list1, test_list2) # printing result print ( "Substrings Intersections : " + str (res)) #this code contributed by tvsk |
The original list 1 is : ['GeeksforLazyroar', 'best', 'for', 'Lazyroar'] The original list 2 is : ['Geeks', 'win', 'or', 'learn'] Substrings Intersections : ['Geeks', 'or']
The time complexity of this recursive approach is O(n * m * k) where n, m and k are the lengths of the two input lists and the maximum length of a string in the input lists.
The space complexity is O(k) where k is the maximum length of a string in the input lists.
Method 5 : use is the set intersection method.
steps for this approach:
Convert both test_list1 and test_list2 to sets, which removes any duplicate elements and makes checking for intersections faster.
Take the intersection of the two sets using the “&” operator.
Convert the resulting set back to a list.
Python3
# Python3 code to demonstrate working of # Substring Intersections # initializing lists test_list1 = [ "GeeksforLazyroar" , "best" , "for" , "Lazyroar" ] test_list2 = [ "Geeks" , "win" , "or" , "learn" ] # printing original lists print ( "The original list 1 is : " + str (test_list1)) print ( "The original list 2 is : " + str (test_list2)) res = [] for i in test_list2: for j in test_list1: if (j.find(i)! = - 1 and i not in res): res.append(i) # printing result print ( "Substrings Intersections : " + str (res)) |
The original list 1 is : ['GeeksforLazyroar', 'best', 'for', 'Lazyroar'] The original list 2 is : ['Geeks', 'win', 'or', 'learn'] Substrings Intersections : ['Geeks', 'or']
The time complexity of this approach is O(mnk), where m and n are the lengths of test_list1 and test_list2, respectively, and k is the maximum length of a substring in either list.
The space complexity is O(k) for storing the res list.