Given the dictionary list, our task is to write a Python Program to extract the mean of all keys.
Input : test_list = [{‘gfg’ : 34, ‘is’ : 8, ‘best’ : 10},
{‘gfg’ : 1, ‘for’ : 10, ‘neveropen’ : 9, ‘and’ : 5, ‘best’ : 12},
{‘neveropen’ : 8, ‘find’ : 3, ‘gfg’ : 3, ‘best’ : 8}]
Output : {‘gfg’: 12.666666666666666, ‘is’: 8, ‘best’: 10, ‘for’: 10, ‘neveropen’: 8.5, ‘and’: 5, ‘find’: 3}
Explanation : best has 3 values, 10, 8 and 12, their mean computed to 10, hence in result.
Input : test_list = [{‘gfg’ : 34, ‘is’ : 8, ‘best’ : 10},
{‘gfg’ : 1, ‘for’ : 10, ‘and’ : 5, ‘best’ : 12},
{ ‘find’ : 3, ‘gfg’ : 3, ‘best’ : 8}]
Output : {‘gfg’: 12.666666666666666, ‘is’: 8, ‘best’: 10, ‘for’: 10, ‘and’: 5, ‘find’: 3}
Explanation : best has 3 values, 10, 8 and 12, their mean computed to 10, hence in result.
Method #1 : Using mean() + loop
In this, for extracting each list loop is used and all the values are summed and memorized using a dictionary. Mean is extracted later by dividing by the occurrence of each key.
Python3
# Python3 code to demonstrate working of # Cumulative Keys Mean in Dictionary List # Using loop + mean() from statistics import mean # initializing list test_list = [{ 'gfg' : 34 , 'is' : 8 , 'best' : 10 }, { 'gfg' : 1 , 'for' : 10 , 'neveropen' : 9 , 'and' : 5 , 'best' : 12 }, { 'neveropen' : 8 , 'find' : 3 , 'gfg' : 3 , 'best' : 8 }] # printing original list print ( "The original list is : " + str (test_list)) res = dict () for sub in test_list: for key, val in sub.items(): if key in res: # combining each key to all values in # all dictionaries res[key].append(val) else : res[key] = [val] for key, num_l in res.items(): res[key] = mean(num_l) # printing result print ( "The Extracted average : " + str (res)) |
Output:
The original list is : [{‘gfg’: 34, ‘is’: 8, ‘best’: 10}, {‘gfg’: 1, ‘for’: 10, ‘neveropen’: 9, ‘and’: 5, ‘best’: 12}, {‘neveropen’: 8, ‘find’: 3, ‘gfg’: 3, ‘best’: 8}]
The Extracted average : {‘gfg’: 12.666666666666666, ‘is’: 8, ‘best’: 10, ‘for’: 10, ‘neveropen’: 8.5, ‘and’: 5, ‘find’: 3}
Time Complexity: O(n)
Auxiliary Space: O(n)
Method #2 : Using defaultdict() + mean()
In this, the task of memorizing is done using defaultdict(). This reduces one conditional check and makes the code more concise.
Python3
# Python3 code to demonstrate working of # Cumulative Keys Mean in Dictionary List # Using defaultdict() + mean() from statistics import mean from collections import defaultdict # initializing list test_list = [{ 'gfg' : 34 , 'is' : 8 , 'best' : 10 }, { 'gfg' : 1 , 'for' : 10 , 'neveropen' : 9 , 'and' : 5 , 'best' : 12 }, { 'neveropen' : 8 , 'find' : 3 , 'gfg' : 3 , 'best' : 8 }] # printing original list print ( "The original list is : " + str (test_list)) # defaultdict reduces step to memorize. res = defaultdict( list ) for sub in test_list: for key, val in sub.items(): res[key].append(val) res = dict (res) for key, num_l in res.items(): # computing mean res[key] = mean(num_l) # printing result print ( "The Extracted average : " + str (res)) |
Output:
The original list is : [{‘gfg’: 34, ‘is’: 8, ‘best’: 10}, {‘gfg’: 1, ‘for’: 10, ‘neveropen’: 9, ‘and’: 5, ‘best’: 12}, {‘neveropen’: 8, ‘find’: 3, ‘gfg’: 3, ‘best’: 8}]
The Extracted average : {‘gfg’: 12.666666666666666, ‘is’: 8, ‘best’: 10, ‘for’: 10, ‘neveropen’: 8.5, ‘and’: 5, ‘find’: 3}
Time Complexity: O(n2)
Auxiliary Space: O(n)
Method #3: Using pandas library
- Import the pandas library.
- Create a pandas DataFrame from the test_list.
- Use the melt function to transform the DataFrame from wide to long format, with one row for each key-value pair.
- Use the groupby function to group the DataFrame by the keys and calculate the mean of the values for each key.Convert the resulting pandas Series to a dictionary.
Python3
import pandas as pd # initializing list test_list = [{ 'gfg' : 34 , 'is' : 8 , 'best' : 10 }, { 'gfg' : 1 , 'for' : 10 , 'neveropen' : 9 , 'and' : 5 , 'best' : 12 }, { 'neveropen' : 8 , 'find' : 3 , 'gfg' : 3 , 'best' : 8 }] # create pandas DataFrame from test_list df = pd.DataFrame(test_list) # transform DataFrame from wide to long format df = df.melt(var_name = 'key' , value_name = 'value' ) # group DataFrame by keys and calculate mean of values for each key res = df.groupby( 'key' ).mean()[ 'value' ].to_dict() # print result print ( "The Extracted average : " + str (res)) |
Output:
The Extracted average : {'and': 5.0, 'best': 10.0, 'find': 3.0, 'for': 10.0, 'neveropen': 8.5, 'gfg': 12.666666666666666, 'is': 8.0}
Time complexity: O(n*logn), where n is the total number of key-value pairs in the test_list.
Auxiliary space: O(n), where n is the total number of key-value pairs in the test_list.
Method #4: using a list comprehension and the setdefault() method
- Create a list of dictionaries test_list.
- Create an empty dictionary res.
- Loop over each dictionary d in test_list.
- Loop over each key-value pair (key, val) in d.
- If the key key is not in res, set its value to an empty list. Append the value val to the list associated with the key key in the res dictionary.
- Create a new dictionary res_mean.
- Loop over each key-value pair (key, val) in the res dictionary.
- Compute the mean of the values val associated with the key key using the mean function from the statistics module.
- Add a new key-value pair to the res_mean dictionary with the key key and the value equal to the mean value computed in step 8.
- Print the res_mean dictionary as a string, with a message indicating that it contains the extracted average values.
Python3
from statistics import mean test_list = [{ 'gfg' : 34 , 'is' : 8 , 'best' : 10 }, { 'gfg' : 1 , 'for' : 10 , 'neveropen' : 9 , 'and' : 5 , 'best' : 12 }, { 'neveropen' : 8 , 'find' : 3 , 'gfg' : 3 , 'best' : 8 }] res = {} for d in test_list: for key, val in d.items(): res.setdefault(key, []).append(val) res_mean = {key: mean(val) for key, val in res.items()} print ( "The Extracted average : " + str (res_mean)) |
The Extracted average : {'gfg': 12.666666666666666, 'is': 8, 'best': 10, 'for': 10, 'neveropen': 8.5, 'and': 5, 'find': 3}
Time complexity: O(nk), where n is the number of dictionaries in test_list and k is the average number of keys in each dictionary.
Auxiliary space: O(mk), where m is the number of unique keys in all the dictionaries in test_list and k is the average number of values associated with each key.