Wednesday, December 25, 2024
Google search engine
HomeLanguagesPython | Count keys with particular value in dictionary

Python | Count keys with particular value in dictionary

Sometimes, while working with Python dictionaries, we can come across a problem in which we have a particular value, and we need to find frequency if it’s occurrence. Let’s discuss certain ways in which this problem can be solved. 

Method #1: Using loop This problem can be solved using naive method of loop. In this we just iterate through each key in dictionary and when a match is found, the counter is increased. 

Python3




# Python3 code to demonstrate working of
# Count keys with particular value in dictionary
# Using loop
 
# Initialize dictionary
test_dict = {'gfg' : 1, 'is' : 2, 'best' : 3, 'for' : 2, 'CS' : 2}
 
# printing original dictionary
print("The original dictionary : " +  str(test_dict))
 
# Initialize value
K = 2
 
# Using loop
# Selective key values in dictionary
res = 0
for key in test_dict:
    if test_dict[key] == K:
        res = res + 1
     
# printing result
print("Frequency of K is : " + str(res))


Output

The original dictionary : {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
Frequency of K is : 3

Time Complexity: O(n)
Auxiliary Space: O(1)

Method #2: Using sum() + values() This can also be solved using the combination of sum() and value(). In this, sum is used to perform the summation of values filtered and values of dictionary are extracted using values() 

Python3




# Python3 code to demonstrate working of
# Count keys with particular value in dictionary
# Using sum() + values()
 
# Initialize dictionary
test_dict = {'gfg' : 1, 'is' : 2, 'best' : 3, 'for' : 2, 'CS' : 2}
 
# printing original dictionary
print("The original dictionary : " +  str(test_dict))
 
# Initialize value
K = 2
 
# Using sum() + values()
# Selective key values in dictionary
res = sum(x == K for x in test_dict.values())
     
# printing result
print("Frequency of K is : " + str(res))


Output

The original dictionary : {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
Frequency of K is : 3

Time Complexity: O(n)
Auxiliary Space: O(1)

Method #3 : Using count() and values().These methods can be used together to find number of keys with particular value.

Python3




# Python3 code to demonstrate working of
# Count keys with particular value in dictionary
# Using count() + values()
 
# Initialize dictionary
test_dict = {'gfg' : 1, 'is' : 2, 'best' : 3, 'for' : 2, 'CS' : 2}
 
# printing original dictionary
print("The original dictionary : " +  str(test_dict))
 
# Initialize value
K = 2
 
# Using count() + values()
list1=list(test_dict.values())
 
# Selective key values in dictionary
res = list1.count(K)
    
# printing result
print("Frequency of K is : " + str(res))


Output

The original dictionary : {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
Frequency of K is : 3

Time Complexity: O(n)
Auxiliary Space : O(n)

Method #4: Using lambda functions

Python3




# Python3 code to demonstrate working of
# Count keys with particular value in dictionary
 
# Initialize dictionary
test_dict = {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
 
# printing original dictionary
print("The original dictionary : " + str(test_dict))
 
# Initialize value
K = 2
 
keys = list(test_dict.keys())
res = len(list(filter(lambda x: test_dict[x] == K, keys)))
 
# printing result
print("Frequency of K is : " + str(res))


Output

The original dictionary : {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
Frequency of K is : 3

Time Complexity: O(n)
Auxiliary Space: O(n)

Method #5: Using collections.Counter()

Python3




# Python3 code to demonstrate working of
# Count keys with particular value in dictionary
# Using collections.Counter()
  
# Importing collections for Counter
import collections
  
# Initialize dictionary
test_dict = {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
  
# printing original dictionary
print("The original dictionary : " + str(test_dict))
  
# Initialize value
K = 2
  
# Using collections.Counter()
res = collections.Counter(test_dict.values())[K]
      
# printing result
print("Frequency of K is : " + str(res))
#This code is contributed by Edula Vinay Kumar Reddy


Output

The original dictionary : {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
Frequency of K is : 3

Time Complexity: O(n)
Auxiliary Space: O(1)

Method #6: Using operator.countOf() method:

Python3




# Python3 code to demonstrate working of
# Count keys with particular value in dictionary
import operator as op
# Initialize dictionary
test_dict = {'gfg' : 1, 'is' : 2, 'best' : 3, 'for' : 2, 'CS' : 2}
 
# printing original dictionary
print("The original dictionary : " +  str(test_dict))
 
# Initialize value
K = 2
 
# Using count() + values()
list1=list(test_dict.values())
 
# Selective key values in dictionary
res = op.countOf(list1,K)
    
# printing result
print("Frequency of K is : " + str(res))


Output

The original dictionary : {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
Frequency of K is : 3

Time Complexity: O(N)
Auxiliary Space: O(N)

Method 7: Using a dictionary comprehension

Step-by-step approach:

  • Create a new dictionary using a dictionary comprehension that counts the occurrence of values in the original dictionary.
  • Create another dictionary using a dictionary comprehension that counts the occurrence of keys with a particular value in the original dictionary.
  • Access the value of the key equal to the given value K in the second dictionary to get the frequency

Python3




# Initialize dictionary
test_dict = {'gfg': 1, 'is': 2, 'best': 3, 'for': 2, 'CS': 2}
 
# Initialize value
K = 2
 
# Create a new dictionary with count of values as keys
count_dict = {v: list(test_dict.values()).count(v) for v in set(test_dict.values())}
 
# Create a new dictionary with count of keys with particular value as values
freq_dict = {v: sum(1 for k in test_dict.keys() if test_dict[k] == v) for v in count_dict.keys()}
 
# Access the frequency of K
res = freq_dict[K]
 
# printing result
print("Frequency of K is : " + str(res))


Output

Frequency of K is : 3

Time complexity: O(n^2)
Auxiliary space: O(n)

RELATED ARTICLES

Most Popular

Recent Comments