Friday, January 10, 2025
Google search engine
HomeLanguagesPython – Boltzmann Distribution in Statistics

Python – Boltzmann Distribution in Statistics

scipy.stats.boltzmann() is a Boltzmann (Truncated Discrete Exponential) discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : boltzmann discrete random variable

Code #1 : Creating boltzmann discrete random variable




# importing library
  
from scipy.stats import boltzmann 
    
numargs = boltzmann .numargs 
a, b = 0.2, 0.8
rv = boltzmann (a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C37A988

Code #2 : boltzmann discrete variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = boltzmann .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(boltzmann.ppf(0.01, a, b),
                boltzmann.ppf(0.99, a, b), 10)
R = boltzmann.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 [0 0 0 0 0 0 0 0 0 0]

Probability Distribution : 
 [-1. -1. -1. -1. -1. -1. -1. -1. -1. -1.]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = boltzmann.ppf(x, a, b) 
y2 = boltzmann.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments