Bokeh is a Python interactive data visualization. It renders its plots using HTML and JavaScript. It targets modern web browsers for presentation providing elegant, concise construction of novel graphics with high-performance interactivity. Bokeh can be used to plot diamond with crosses on a graph. Plotting diamond with crosses on a graph can be done using the diamond_cross() method of the plotting module.
plotting.figure.diamond_cross()
Syntax : diamond_cross(parameters) Parameters :
- x : x-coordinates of the center of the diamond cross markers
- y : y-coordinates of the center of the diamond cross markers
- size : diameter of the diamond cross markers, default is 4
- angle : angle of rotation of the diamond cross markers, default is 0
- angle_units : unit of the angle, default is rad
- fill_alpha : fill alpha value of the diamond cross markers
- fill_color : fill color value of the diamond cross markers
- line_alpha : percentage value of line alpha, default is 1
- line_cap : value of line cap for the line, default is butt
- line_color : color of the line, default is black
- line_dash : value of line dash such as :
- solid
- dashed
- dotted
- dotdash
- dashdot
- line_dash_offset : value of line dash offset, default is 0
- line_join : value of line join, default in bevel
- line_width : value of the width of the line, default is 1
- name : user-supplied name for the model
- tags : user-supplied values for the model
Other Parameters :
- alpha : sets all alpha keyword arguments at once
- color : sets all color keyword arguments at once
- legend_field : name of a column in the data source that should be used
- legend_group : name of a column in the data source that should be used
- legend_label : labels the legend entry
- muted : determines whether the glyph should be rendered as muted or not, default is False
- name : optional user-supplied name to attach to the renderer
- source : user-supplied data source
- view : view for filtering the data source
- visible : determines whether the glyph should be rendered or not, default is True
- x_range_name : name of an extra range to use for mapping x-coordinates
- y_range_name : name of an extra range to use for mapping y-coordinates
- level : specifies the render level order for this glyph
Returns : an object of class GlyphRenderer
Example 1 :In this example we will be using the default values for plotting the graph. We have provided the size and fill_color attributes to make the glyph visible.
Python3
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file("gfg.html") # instantiating the figure object graph = figure(title = "Bokeh Diamond Cross Graph") # the points to be plotted x = [ - 5 , - 4 , - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 , 5 ] y = [i * * 2 for i in x] # plotting the graph graph.diamond_cross(x, y, size = 25 , fill_color = None ) # displaying the model show(graph) |
Output : Example 2 :In this example we will be plotting the diamond crosses with dotted lines alongside other parameters and the size of the diamond crosses are in proportion to their values.
Python3
# importing the modules from bokeh.plotting import figure, output_file, show # file to save the model output_file("gfg.html") # instantiating the figure object graph = figure(title = "Bokeh Diamond Cross Graph") # name of the x-axis graph.xaxis.axis_label = "x - axis" # name of the y-axis graph.yaxis.axis_label = "y - axis" # the points to be plotted x = [ - 5 , - 4 , - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , 4 , 5 ] y = [i * * 2 for i in x] # size of the diamonds size = [i * 2 for i in y] # angle of the diamonds angle = 10 # fill color value fill_color = None # color of the line line_color = "red" # type of line line_dash = "dotted" # offset of line dash line_dash_offset = 1 # width of the dashes line_width = 10 # name of the legend legend_label = "Sample Dashes" # plotting the graph graph.diamond_cross(x, y, size = size, angle = angle, fill_color = fill_color, line_color = line_color, line_dash = line_dash, line_dash_offset = line_dash_offset, line_width = line_width, legend_label = legend_label) # displaying the model show(graph) |
Output :