Thursday, December 26, 2024
Google search engine
HomeLanguagesPython – Bernoulli Distribution in Statistics

Python – Bernoulli Distribution in Statistics

scipy.stats.bernoulli() is a Bernoulli discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Bernoulli discrete random variable

Code #1 : Creating Bernoulli discrete random variable




# importing library
  
from scipy.stats import bernoulli 
    
numargs = bernoulli .numargs 
a, b = 0.2, 0.8
rv = bernoulli (a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C0FC108

Code #2 : Bernoulli discrete variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = bernoulli .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(bernoulli.ppf(0.01, a, b),
                bernoulli.ppf(0.99, a, b), 10)
R = bernoulli.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 [0 0 0 0 0 0 0 0 0 1]

Probability Distribution : 
 [ 4.  4. nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 


Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = bernoulli.ppf(x, a, b) 
y2 = bernoulli.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"


Output :

RELATED ARTICLES

Most Popular

Recent Comments