Saturday, December 28, 2024
Google search engine
HomeLanguagesPySpark – Order by multiple columns

PySpark – Order by multiple columns

In this article, we are going to see how to orderby multiple columns in  PySpark DataFrames through Python.

Create the dataframe for demonstration:

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
dataframe.show()


Output:

orderby means we are going to sort the dataframe by multiple columns in ascending or descending order. we can do this by using the following methods.

Method 1 : Using orderBy()

This function will return the dataframe after ordering the multiple columns. It will sort first based on the column name given.

Syntax:

  • Ascending order: dataframe.orderBy([‘column1′,’column2′,……,’column n’], ascending=True).show()
  • Descending Order: dataframe.orderBy([‘column1′,’column2′,……,’column n’], ascending=False).show()

where:

  • dataframe is the Pyspark Input dataframe
  • ascending=True specifies to sort the dataframe in ascending order
  • ascending=False specifies to sort the dataframe in descending order

Example 1: Sort the PySpark dataframe in ascending order with orderBy().

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# orderBy dataframe in asc order
dataframe.orderBy(['Name', 'ID', 'Company'],
                  ascending=True).show()


Output:

Example 2: Sort the PySpark dataframe in descending order with orderBy().

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# orderBy dataframe in desc order
dataframe.orderBy(['Name', 'ID', 'Company'], 
                  ascending=False).show()


Output:

Method 2: Using sort()

This function will return the dataframe after ordering the multiple columns. It will sort first based on the column name given.

Syntax:

  • Ascending order: dataframe.sort([‘column1′,’column2′,……,’column n’], ascending=True).show()
  • Descending Order: dataframe.sort([‘column1′,’column2′,……,’column n’], ascending=False).show()

where,

  1. dataframe is the Pyspark Input dataframe
  2. ascending=True specifies to sort the dataframe in ascending order
  3. ascending=False specifies to sort the dataframe in descending order

Example 1: Sort PySpark dataframe in ascending order

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# orderBy dataframe in asc order
dataframe.sort(['Name', 'ID', 'Company'],
               ascending=True).show()


Output:

Example 2: Sort the PySpark dataframe in descending order

Python3




# importing module
import pyspark
  
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
  
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
  
# list  of employee data
data = [["1", "sravan", "company 1"],
        ["2", "ojaswi", "company 1"],
        ["3", "rohith", "company 2"],
        ["4", "sridevi", "company 1"],
        ["5", "bobby", "company 1"]]
  
# specify column names
columns = ['ID', 'NAME', 'Company']
  
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
  
# orderBy dataframe in desc order
dataframe.sort(['Name', 'ID', 'Company'],
               ascending=False).show()


Output:

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments