Friday, January 10, 2025
Google search engine
HomeLanguagesPymatrix module in python

Pymatrix module in python

Pymatrix is a lightweight matrix library which supports basic linear algebra operations. The elements in matrix should be numeric type to support basic algebra operations – int, float, rational, complex.
 

Instantiating Matrix

 

  1. Using Matrix constructor 
    Matrix can be initialised using constructor of Matrix class in pymatrix library.
     

Syntax: Matrix(rows, cols, fill=val(optional))
Parameters
rows – specify number of rows 
cols – specify number of columns 
fill – initialise all the elements with this value. It is an optional argument, the default fill is 0. 
 

  1. Example: 
     

Python3




import pymatrix
 
 
m = pymatrix.Matrix(2, 3, fill = '2')
print(m)


  1. Output:
     
2 2 2
2 2 2
  1.  
  2. Using list of lists 
    We can convert a list of lists into a matrix using the from_list() method where each list is treated as a row. Example- 
     

Python3




import pymatrix
 
 
list = [[1, 2, 3], [6, 4, 7], [3, 9, 1]]
m = pymatrix.Matrix.from_list(list)
print(m)


  1. Output:
     
1 2 3
6 4 7
3 9 1
  1.  
  2. Using string 
    We can convert a string into matrix object using from_string() method. The string is in triple quotes and each line is treated as a row. Example 
     

Python3




import pymatrix
 
 
string = '''1 2 3
       6 4 7
       3 9 1'''
 
m = pymatrix.Matrix.from_string(string)
print(m)


  1. Output:
     
1 2 3
6 4 7
3 9 1
  1.  

 

Matrix methods

Following are some of the methods provided in pymatrix library : 
 

  • identity(n) – Creating an identity matrix of given size. This returns an object of Matrix class.
  • is_square() – Checks whether given matrix is a square matrix or not. This returns a boolean value.
  • is_invertible() – Checks whether given matrix is invertible or not. This returns a boolean value.
  • inv() – Returns the inverse matrix if it exists, otherwise raises MatrixError exception.
  • det() – Returns the determinant matrix if square matrix, otherwise raises MatrixError(‘non-square matrix does not have determinant’) exception.
  • rank() – Returns the rank of matrix, rank is of integer type.
  • trans() – Returns the transpose of the matrix.
  • adjoint() – Returns the adjoint matrix.

Example: 
 

Python3




# Python program for Matrix methods
from pymatrix import Matrix
 
 
# identity matrix of size 2
identity_matrix = Matrix.identity(2)
print('\nIdentity matrix :')
print(identity_matrix)
 
m = Matrix.from_list([[1,2,1],[2,1,1],[1,1,1]])
 
print('\nIs a square matrix :')
print(m.is_square())
 
print('\nIs an invertible matrix :')
print(m.is_invertible())
 
print('\nInverse :')
print(m.inv())
 
print('\nDeterminant :')
print(m.det())
 
print('\nRank :')
print(m.rank())
 
print('\nTranspose :')
print(m.trans())
 
print('\nAdjoint :')
print(m.adjoint())


Output:
 

Identity matrix :
1 0
0 1

Is a square matrix :
True

Is an invertible matrix :
True

Inverse :
 0.0  1.0 -1.0
 1.0  0.0 -1.0
-1.0 -1.0  3.0

Determinant :
-1.0

Rank :
3

Transpose :
1 2 1
2 1 1
1 1 1

Adjoint :
 0.0 -1.0  1.0
-1.0  0.0  1.0
 1.0  1.0 -3.0

 

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments