Please see previous articles on Proto Van Emde Boas Tree to understand these properly.
Procedure for Insert:
- Base Case: If the size of Proto-VEB is 2 then assign true to the bit array( Here we in code we assign Proto-VEB(1) due to recursive structure and so now it is not nullptr and it act as true ) at the position of key.
- Until we reach at the base case, we will recursively call insert on cluster containing key and also now we use the key as the position of the key in that cluster instead of the query key.
Example: Let’s insert 2 into Proto-VEB (u=4): From the procedure of insert we will start recursion as size of Proto-VEB is greater than 2 so we recursively call insert() on cluster number 2/which is 1 and it’s position 2%which is 0 so recursive call will be insert(cluster[1], 0).
And cluster[1] is size 2 Proto-VEB, we reached at the base case so it will assign true at( in code Proto-VEB(1) as true ) cluster[1] 0th place.
Likewise, we will do the same procedure over summary.
See the image below for more clarity:
Follow the instructions written near the boxes from top to bottom.
isMember procedure: This procedure returns boolean value according to whether the key is present in Proto-VEB or not. It is quite trivial to understand see the image above to get the idea about it.
- Base Case: If the Proto-VEB size is 2 then check if bit array value at the key position is true or not and return value accordingly. (In code we check whether pointer at the key position is nullptr or not.)
- Recursion: we do recursive call over cluster containing key until we reach the base case.
Implementation of above algorithm:
CPP
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; class Proto_Van_Emde_Boas { public : // Total number of keys int universe_size; // Summary Proto_Van_Emde_Boas* summary; // Clusters array of Proto-VEB pointers vector<Proto_Van_Emde_Boas*> clusters; int root( int u) { return int ( sqrt (u)); } // Function to return cluster numbers // in which key is present int high( int x) { return x / root(universe_size); } // Function to return position of x in cluster int low( int x) { return x % root(universe_size); } // Function to return the index from // cluster number and position int generate_index( int cluster, int position) { return cluster * root(universe_size) + position; } // Constructor Proto_Van_Emde_Boas( int size) { universe_size = size; // Base case if (size <= 2) { // Set summary to nullptr as there is no // more summary for size 2 summary = nullptr; // Vector of two pointers // nullptr in starting clusters = vector<Proto_Van_Emde_Boas*>(size, nullptr); } else { // Assigning Proto-VEB(sqrt(u)) to summary summary = new Proto_Van_Emde_Boas(root(size)); // Creating array of Proto-VEB Tree pointers of size sqrt(u) // first all nullptrs are going to assign clusters = vector<Proto_Van_Emde_Boas*>(root(size), nullptr); // Assigning Proto-VEB(sqrt(u)) to all its clusters for ( int i = 0; i < root(size); i++) { clusters[i] = new Proto_Van_Emde_Boas(root(size)); } } } }; // Function that returns true if the // key is present in the tree bool isMember(Proto_Van_Emde_Boas* helper, int key) { // If key is greater then universe_size then // returns false if (key >= helper->universe_size) return false ; // If we reach at base case // the just return whether // pointer is nullptr then false // else return true if (helper->universe_size == 2) { return helper->clusters[key]; } else { // Recursively go deep into the // level of Proto-VEB tree using its // cluster index and its position return isMember(helper->clusters[helper->high(key)], helper->low(key)); } } // Function to insert a key in the tree void insert(Proto_Van_Emde_Boas*& helper, int key) { // If we reach at base case // then assign Proto-VEB(1) in place // of nullptr if (helper->universe_size == 2) { helper->clusters[key] = new Proto_Van_Emde_Boas(1); } else { // Recursively using index of cluster and its // position in cluster insert(helper->clusters[helper->high(key)], helper->low(key)); // Also do the same recursion in summary VEB insert(helper->summary, helper->high(key)); } } // Driver code int main() { Proto_Van_Emde_Boas* hello = new Proto_Van_Emde_Boas(4); cout << isMember(hello, 3); insert(hello, 3); cout << isMember(hello, 3); } |
Java
// Java implementation of the approach import java.util.*; class ProtoVanEmdeBoas { // Total number of keys int universeSize; // Summary ProtoVanEmdeBoas summary; // Clusters array of ProtoVanEmdeBoas pointers List<ProtoVanEmdeBoas> clusters; ProtoVanEmdeBoas( int size) { universeSize = size; // Base case if (size <= 2 ) { // Set summary to null as there is no more // summary for size 2 summary = null ; // List of two pointers, null in starting clusters = new ArrayList<ProtoVanEmdeBoas>(size); for ( int i = 0 ; i < size; i++) { clusters.add( null ); } } else { // Assign ProtoVanEmdeBoas(sqrt(u)) to summary summary = new ProtoVanEmdeBoas(root(size)); // Creating array of ProtoVanEmdeBoas Tree // pointers of size sqrt(u) first all nulls are // going to assign clusters = new ArrayList<ProtoVanEmdeBoas>( root(size)); for ( int i = 0 ; i < root(size); i++) { clusters.add( null ); } // Assign ProtoVanEmdeBoas(sqrt(u)) to all its // clusters for ( int i = 0 ; i < root(size); i++) { clusters.set( i, new ProtoVanEmdeBoas(root(size))); } } } int root( int u) { return ( int )Math.sqrt(u); } int high( int x) { return x / root(universeSize); } // Function to return position of x in cluster int low( int x) { return x % root(universeSize); } int generateIndex( int cluster, int position) { return cluster * root(universeSize) + position; } } // Driver code class main { // Function that returns true if the key is present in // the tree static boolean isMember(ProtoVanEmdeBoas helper, int key) { // If key is greater than or equal to universeSize // then return false if (key >= helper.universeSize) { return false ; } if (helper.universeSize == 2 ) { return helper.clusters.get(key) != null ; } else { return isMember( helper.clusters.get(helper.high(key)), helper.low(key)); } } // Function to insert a key in the tree static void insert(ProtoVanEmdeBoas helper, int key) { if (helper.universeSize == 2 ) { helper.clusters.set(key, new ProtoVanEmdeBoas( 1 )); } else { insert(helper.clusters.get(helper.high(key)), helper.low(key)); // Also do the same recursion in summary VEB insert(helper.summary, helper.high(key)); } } // Driver code public static void main(String[] args) { ProtoVanEmdeBoas hello = new ProtoVanEmdeBoas( 4 ); // checking is member or not by calling isMember func. System.out.println(isMember(hello, 3 )); // inserting insert(hello, 3 ); // again checking is member or not by calling isMember func. System.out.println(isMember(hello, 3 )); } } |
Python3
import math class Proto_Van_Emde_Boas: def __init__( self , size): self .universe_size = size if size < = 2 : self .summary = None self .clusters = [ None ] * size else : self .summary = Proto_Van_Emde_Boas( int (math.sqrt(size))) self .clusters = [Proto_Van_Emde_Boas( int (math.sqrt(size))) for _ in range ( int (math.sqrt(size)))] def root( self , u): return int (math.sqrt(u)) def high( self , x): return x / / self .root( self .universe_size) def low( self , x): return x % self .root( self .universe_size) def generate_index( self , cluster, position): return cluster * self .root( self .universe_size) + position def isMember(helper, key): if key > = helper.universe_size: return False elif helper.universe_size = = 2 : return helper.clusters[key] is not None else : return isMember(helper.clusters[helper.high(key)], helper.low(key)) def insert(helper, key): if helper.universe_size = = 2 : helper.clusters[key] = Proto_Van_Emde_Boas( 1 ) else : insert(helper.clusters[helper.high(key)], helper.low(key)) insert(helper.summary, helper.high(key)) # Driver code hello = Proto_Van_Emde_Boas( 4 ) print (isMember(hello, 3 )) insert(hello, 3 ) print (isMember(hello, 3 )) |
Javascript
class Proto_Van_Emde_Boas { constructor(size) { this .universe_size = size; if (size <= 2) { this .summary = null ; this .clusters = Array(size).fill( null ); } else { this .summary = new Proto_Van_Emde_Boas(Math.floor(Math.sqrt(size))); this .clusters = Array(Math.floor(Math.sqrt(size))).fill( null ).map(() => new Proto_Van_Emde_Boas(Math.floor(Math.sqrt(size)))); } } root(u) { return Math.floor(Math.sqrt(u)); } high(x) { return Math.floor(x / this .root( this .universe_size)); } low(x) { return x % this .root( this .universe_size); } generate_index(cluster, position) { return cluster * this .root( this .universe_size) + position; } } function isMember(helper, key) { if (key >= helper.universe_size) return false ; if (helper.universe_size === 2) { return helper.clusters[key] !== null ; } else { return isMember(helper.clusters[helper.high(key)], helper.low(key)); } } function insert(helper, key) { if (helper.universe_size === 2) { helper.clusters[key] = new Proto_Van_Emde_Boas(1); } else { insert(helper.clusters[helper.high(key)], helper.low(key)); insert(helper.summary, helper.high(key)); } } const hello = new Proto_Van_Emde_Boas(4); console.log(isMember(hello, 3)); insert(hello, 3); console.log(isMember(hello, 3)); |
C#
using System; using System.Collections.Generic; public class ProtoVanEmdeBoas { // Total number of keys public int universeSize; // Summary public ProtoVanEmdeBoas summary; // Clusters array of ProtoVanEmdeBoas pointers public List<ProtoVanEmdeBoas> clusters; public ProtoVanEmdeBoas( int size) { universeSize = size; // Base case if (size <= 2) { // Set summary to null as there is no more // summary for size 2 summary = null ; // List of two pointers, null in starting clusters = new List<ProtoVanEmdeBoas>(size); for ( int i = 0; i < size; i++) { clusters.Add( null ); } } else { // Assign ProtoVanEmdeBoas(sqrt(u)) to summary summary = new ProtoVanEmdeBoas(root(size)); // Creating array of ProtoVanEmdeBoas Tree // pointers of size sqrt(u) first all nulls are // going to assign clusters = new List<ProtoVanEmdeBoas>(root(size)); for ( int i = 0; i < root(size); i++) { clusters.Add( null ); } // Assign ProtoVanEmdeBoas(sqrt(u)) to all its // clusters for ( int i = 0; i < root(size); i++) { clusters[i] = new ProtoVanEmdeBoas(root(size)); } } } public int root( int u) { return ( int )Math.Sqrt(u); } public int high( int x) { return x / root(universeSize); } // Function to return position of x in cluster public int low( int x) { return x % root(universeSize); } public int generateIndex( int cluster, int position) { return cluster * root(universeSize) + position; } } class Program { // Function that returns true if the key is present in // the tree static bool isMember(ProtoVanEmdeBoas helper, int key) { // If key is greater than or equal to universeSize // then return false if (key >= helper.universeSize) { return false ; } if (helper.universeSize == 2) { return helper.clusters[key] != null ; } else { return isMember( helper.clusters[helper.high(key)], helper.low(key)); } } // Function to insert a key in the tree static void insert(ProtoVanEmdeBoas helper, int key) { if (helper.universeSize == 2) { helper.clusters[key] = new ProtoVanEmdeBoas(1); } else { insert(helper.clusters[helper.high(key)], helper.low(key)); // Also do the same recursion in summary VEB insert(helper.summary, helper.high(key)); } } // Driver code static void Main() { ProtoVanEmdeBoas hello = new ProtoVanEmdeBoas(4); // checking is member or not by calling isMember func. Console.WriteLine(isMember(hello, 3)); // inserting insert(hello, 3); Console.WriteLine(isMember(hello, 3)); }} |
Insert Algorithm Complexity Recurrence:
T(u) = 2T() + O(1)
This algorithm runs in O(log2(u)) worst-case time.
isMember Algorithm Complexity Recurrence:
T(u) = T() + O(1)
This algorithm runs in O(log2(log2(u))) worst-case time.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!