Friday, October 10, 2025
HomeData Modelling & AIProgram to solve the Alligation Problem

Program to solve the Alligation Problem

Write a program to find the ratio in which a shopkeeper will mix two types of rice worth Rs. X        kg and Rs. Y        kg, so that the average cost of the mixture is Rs. Z        kg.

Examples

Input: X = 50, Y = 70, Z = 65
Output: Ratio = 1:3

Input: X = 1000, Y = 2000, Z = 1400
Output: Ratio = 3:2

 

According to Alligation rule, the ratio of the weights of two items mixed will be inversely proportional to the deviation of attributes of these two items from the average attribute of the resultant mixture.
 

w1 / w2 = (d - m) / (m - c)

alligation

Below program illustrate the above approach:
 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find the ratio of two mixtures
void alligation(float x, float y, float m)
{
    // Find the cheaper among x and y
    float c = (x <= y) ? x : y;
    // Find the dearer among x and y
    float d = (x >= y) ? x : y;
 
    // Find ratio r1:r2
    int r1 = d - m;
    int r2 = m - c;
 
    // Convert the ration into simpler form
    int gcd = __gcd(r1, r2);
 
    cout << r1 / gcd << ":" << r2 / gcd;
}
 
// Driver code
int main()
{
    float x, y, z;
    x = 50;
    y = 70;
    z = 65;
 
    alligation(x, y, z);
 
    return 0;
}


Java




// Java implementation of the
// above approach.
import java.util.*;
 
class solution
{
 
static float __gcd(float a, float b)
{
    float dividend,divisor;
     
    // a is greater or equal to b
    if(a>=b)
    dividend = a;
    else
    dividend = b;
     
    // b is greater or equal to a
    if(a<=b)
    divisor = a;
    else
    divisor = b;
     
while(divisor>0)
{
float remainder = dividend % divisor;
dividend = divisor;
divisor = remainder;
 
}
return dividend;
}
// Function to find the ratio of two mixtures
static void alligation(float x, float y, float m)
{
    // Find the cheaper among x and y
    float c;
    if (x <= y)
    c = x;
    else
    c = y;
    // Find the dearer among x and y
    float d ;
    if (x >= y)
    d = x;
    else
    d = y;
 
    // Find ratio r1:r2
    float r1 = d - m;
    float r2 = m - c;
 
    // Convert the ration into simpler form
    float gcd = __gcd(r1, r2);
 
    System.out.println((int)(r1 / gcd)+":"+(int)(r2 / gcd));
}
 
// Driver code
public static void main(String args[])
{
    float x, y, z;
    x = 50;
    y = 70;
    z = 65;
 
    alligation(x, y, z);
}
}
 
// This code is contributed by
// Shashank_sharma


Python3




# Python 3 implementation of the
# above approach.
from math import gcd
 
# Function to find the ratio
# of two mixtures
def alligation(x, y, m):
     
    # Find the cheaper among x and y
    if (x <= y):
        c = x
    else:
        c = y
         
    # Find the dearer among x and y
    if (x >= y):
        d = x
    else:
        d = y
 
    # Find ratio r1:r2
    r1 = d - m
    r2 = m - c
 
    # Convert the ration into simpler form
    __gcd = gcd(r1, r2)
 
    print(r1 // __gcd, ":", r2 // __gcd)
 
# Driver code
if __name__ == '__main__':
    x = 50
    y = 70
    z = 65
 
    alligation(x, y, z)
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of the
// above approach.
using System;
 
class GFG
{
    // Recursive function to return
    // gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0
        if (a == 0)
            return b;
        if (b == 0)
            return a;
         
        // base case
        if (a == b)
            return a;
         
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
     
    // Function to find the ratio of
    // two mixtures
    static void alligation(float x,
                           float y, float m)
    {
        // Find the cheaper among x and y
        float c = (x <= y) ? x : y;
         
        // Find the dearer among x and y
        float d = (x >= y) ? x : y;
     
        // Find ratio r1:r2
        int r1 = (int)(d - m);
        int r2 = (int)(m - c);
     
        // Convert the ration into
        // simpler form
        int gcd = __gcd(r1, r2);
     
        Console.Write(r1 / gcd + ":" +
                      r2 / gcd);
    }
     
    // Driver code
    public static void Main()
    {
        float x, y, z;
        x = 50;
        y = 70;
        z = 65;
     
        alligation(x, y, z);
    }
}
 
// This code is contributed
// by Akanksha Rai


PHP




<?php
// PHP implementation of the
// above approach.
function __gcd($a, $b)
{
    $dividend; $divisor;
     
    // a is greater or equal to b
    if($a >= $b)
        $dividend = $a;
    else
        $dividend = $b;
     
    // b is greater or equal to a
    if($a <= $b)
        $divisor = $a;
    else
        $divisor = $b;
     
    while($divisor > 0)
    {
        $remainder = $dividend % $divisor;
        $dividend = $divisor;
        $divisor = $remainder;
    }
    return $dividend;
}
 
// Function to find the ratio of
// two mixtures
function alligation($x, $y, $m)
{
    // Find the cheaper among x and y
    if ($x <= $y)
        $c = $x;
    else
        $c = $y;
     
    // Find the dearer among x and y
    if ($x >= $y)
        $d = $x;
    else
        $d = $y;
 
    // Find ratio r1:r2
    $r1 = $d - $m;
    $r2 = $m - $c;
 
    // Convert the ration into
    // simpler form
    $gcd = __gcd($r1, $r2);
 
    echo (int)($r1 / $gcd) . ":" .
         (int)($r2 / $gcd);
}
 
// Driver code
$x = 50;
$y = 70;
$z = 65;
 
alligation($x, $y, $z);
 
// This code is contributed by
// Mukul Singh
?>


Javascript




<script>
    // Javascript implementation of the above approach.
     
    // Recursive function to return
    // gcd of a and b
    function __gcd(a, b)
    {
        // Everything divides 0
        if (a == 0)
            return b;
        if (b == 0)
            return a;
           
        // base case
        if (a == b)
            return a;
           
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
       
    // Function to find the ratio of
    // two mixtures
    function alligation(x, y, m)
    {
        // Find the cheaper among x and y
        let c = (x <= y) ? x : y;
           
        // Find the dearer among x and y
        let d = (x >= y) ? x : y;
       
        // Find ratio r1:r2
        let r1 = (d - m);
        let r2 = (m - c);
       
        // Convert the ration into
        // simpler form
        let gcd = __gcd(r1, r2);
       
        document.write(parseInt(r1 / gcd, 10) + ":" + parseInt(r2 / gcd, 10));
    }
     
    let x, y, z;
    x = 50;
    y = 70;
    z = 65;
 
    alligation(x, y, z);
 
// This code is contributed by mukesh07.
</script>


Output: 

1:3

 

Time Complexity: O(log(min(x,y)), gcd function takes logarithmic time complexity.
Auxiliary Space: O(1) as constant space is being used.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32350 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6718 POSTS0 COMMENTS
Nicole Veronica
11880 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6838 POSTS0 COMMENTS
Ted Musemwa
7101 POSTS0 COMMENTS
Thapelo Manthata
6794 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS