Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIProgram to print the Ladder Pattern

Program to print the Ladder Pattern

Given an integer N, the task is to print the ladder with N steps using ‘*’. The ladder will be with the gap of 3 spaces between two side rails.
 

Input: N = 3

Output: 

*   *

*   *

*****

*   *

*   *

*****

*   *

*   *

*****

*   *

*   *

Input: N = 4

Output: 

*   *

*   *

*****

*   *

*   *

*****

*   *

*   *

*****

*   *

*   *

*****

*   *

*   *

Approach: Dividing the pattern into two sub-pattern. 
 

  •  
*    *
*    *
  • which will be printed N+1 times
  •  
*****
*    *
*    *
  • which will be printed N times.

Below is the implementation of the above approach:
 

C++




// C++ program to print the ladder pattern
  
#include <iostream>
using namespace std;
  
// Function to print the desired ladder Pattern
void ladder_pattern(int N)
{
  
    for (int i = 0; i <= N; i++) {
        // Printing the sub-pattern 1
        // N+1 times
        cout << "*   *" << endl;
        cout << "*   *" << endl;
  
        if (i < N) {
            // Printing the sub-pattern 2
            // N times
            cout << "*****" << endl;
        }
    }
}
  
// Driver Code
int main()
{
    // Size of the Pattern
    int N = 3;
  
    // Print the ladder
    ladder_pattern(N);
  
    return 0;
}


Java




// Java program to print the ladder pattern
class GFG 
{
  
// Function to print the desired ladder Pattern
static void ladder_pattern(int N)
{
  
    for (int i = 0; i <= N; i++) 
    {
          
        // Printing the sub-pattern 1
        // N+1 times
        System.out.println("*   *");
        System.out.println("*   *");
  
        if (i < N)
        {
            // Printing the sub-pattern 2
            // N times
            System.out.println("*****" );
        }
    }
}
  
// Driver Code
public static void main(String args[])
{
    // Size of the Pattern
    int N = 3;
  
    // Print the ladder
    ladder_pattern(N);
}
}
  
// This code is contributed by Rajput Ji


Python3




# Python3 program to print the ladder pattern 
  
# Function to print the desired ladder Pattern 
def ladder_pattern(N) :
  
    for i in range(N + 1) :
          
        # Printing the sub-pattern 1 
        # N + 1 times 
        print("*   *"); 
        print("*   *"); 
  
        if (i < N) :
              
            # Printing the sub-pattern 2 
            # N times 
            print("*****"); 
  
# Driver Code 
if __name__ == "__main__"
      
    # Size of the Pattern 
    N = 3
  
    # Print the ladder 
    ladder_pattern(N); 
      
# This code is contributed by AnkitRai01


C#




// C# program to print the ladder pattern
using System;
  
class GFG
{
      
// Function to print the desired ladder Pattern
static void ladder_pattern(int N)
{
    for (int i = 0; i <= N; i++) 
    {
          
        // Printing the sub-pattern 1
        // N+1 times
        Console.WriteLine("*   *");
        Console.WriteLine("*   *");
  
        if (i < N)
        {
            // Printing the sub-pattern 2
            // N times
            Console.WriteLine("*****");
        }
    }
}
  
// Driver Code
static public void Main ()
{
    // Size of the Pattern
    int N = 3;
  
    // Print the ladder
    ladder_pattern(N);
}
}
  
// This code is contributed by ajit.


Javascript




<script>
      // JavaScript program to print the ladder pattern
  
      // Function to print the desired ladder Pattern
      function ladder_pattern(N) {
        for (var i = 0; i <= N; i++) {
          // Printing the sub-pattern 1
          // N+1 times
          document.write("*      *" + "<br>");
          document.write("*      *" + "<br>");
  
          if (i < N) {
            // Printing the sub-pattern 2
            // N times
            document.write("*****" + "<br>");
          }
        }
      }
  
      // Driver Code
      // Size of the Pattern
      var N = 3;
      // Print the ladder
      ladder_pattern(N);
    </script>


Output: 

*   *
*   *
*****
*   *
*   *
*****
*   *
*   *
*****
*   *
*   *

 

Time complexity: O(N) for given input N steps
Auxiliary Space:  O(1) as constant extra space is used

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments