Given a number N, the task is to print Hut of width n.
Algorithm:
- Take input for the width of the hut (n).
- If n is even, increment it by 1.
- Loop through rows from 0 to n – n/3.
- Loop through columns from 0 to n.
- Determine the character to print based on the position of the row and column:
a. If the position is on the roof, print “”.
b. If the position is on the walls, print “|” or “_” depending on the location of the position.
c. If the position is on the windows or door, print a combination of “” and “|” or “_” based on the location of the position.
d. Otherwise, print a space. - Print a newline character after each row is completed.
Pseudocode:
1. Input n 2. If n is even, set n = n + 1 3. for i = 0 to n - n/3 do 4. for j = 0 to n do 5. if (i == n/5 || i == n - n/3 || (j == n - 1 && i >= n/5) || (j >= n/5 && j < n - n/5 && i == 0) || (j == 0 && i >= n/5) || (j == t && i > n/5) || (i <= n/5 && (i + j == n/5 || j - i == n/5)) || (j - i == n - n/5)) then 6. print "*" 7. else if (i == n/5 + n/7 && (j >= n/7 && j <= t - n/7)) then 8. print "_" 9. else if (i >= n/5 + n/7 && (j == n/7 || j == t - n/7)) then 10. print "|" 11. else 12. print " " 13. print newline 14. end for 15. end for
Below is the code to implement the above problem:
Program:
C++
// C++ Program to draw a hut pattern #include <iostream> using namespace std; // Program to print the Hut int hut_pattern( int n) { int i, j, t; if (n % 2 == 0) { n++; } for (i = 0; i <= n - n / 3; i++) { for (j = 0; j < n; j++) { t = 2 * n / 5; if (t % 2 != 0) { t--; } if (i == n / 5 || i == n - n / 3 || (j == n - 1 && i >= n / 5) || (j >= n / 5 && j < n - n / 5 && i == 0) || (j == 0 && i >= n / 5) || (j == t && i > n / 5) || (i <= n / 5 && (i + j == n / 5 || j - i == n / 5)) || (j - i == n - n / 5)) { cout << "*" ; } else if (i == n / 5 + n / 7 && (j >= n / 7 && j <= t - n / 7)) { cout << "_" ; } else if (i >= n / 5 + n / 7 && (j == n / 7 || j == t - n / 7)) { cout << "|" ; } else { cout << " " ; } } cout << "\n" ; } } // Driver method int main() { // Get the width of the Hut in n int n = 15; // Print the Hut hut_pattern(n); } |
Java
// Java Program to draw a hut pattern class GFG{ // Program to print the Hut static void hut_pattern( int n) { int i, j, t; if (n % 2 == 0 ) { n++; } for (i = 0 ; i <= n - n / 3 ; i++) { for (j = 0 ; j < n; j++) { t = 2 * n / 5 ; if (t % 2 != 0 ) { t--; } if (i == n / 5 || i == n - n / 3 || (j == n - 1 && i >= n / 5 ) || (j >= n / 5 && j < n - n / 5 && i == 0 ) || (j == 0 && i >= n / 5 ) || (j == t && i > n / 5 ) || (i <= n / 5 && (i + j == n / 5 || j - i == n / 5 )) || (j - i == n - n / 5 )) { System.out.print( "*" ); } else if (i == n / 5 + n / 7 && (j >= n / 7 && j <= t - n / 7 )) { System.out.print( "_" ); } else if (i >= n / 5 + n / 7 && (j == n / 7 || j == t - n / 7 )) { System.out.print( "|" ); } else { System.out.print( " " ); } } System.out.print( "\n" ); } } // Driver method public static void main (String[] args) { // Get the width of the Hut in n int n = 15 ; // Print the Hut hut_pattern(n); } } |
Python3
# Python 3 Program to # draw a hut pattern # Program to print the Hut def hut_pattern(n): if n % 2 = = 0 : n = n + 1 for i in range ( 0 , n - n / / 3 + 1 , 1 ): for j in range ( 0 , n, 1 ): t = 2 * n / 5 if t % 2 ! = 0 : t = t - 1 if ((i = = n / 5 ) or (i = = n - n / 3 ) or (j = = n - 1 and i > = n / 5 ) or (j > = n / 5 and j < n - n / 5 and i = = 0 ) or (j = = 0 and i > = n / 5 ) or (j = = t and i > n / 5 ) or (i < = n / 5 and (i + j = = n / 5 or j - i = = n / 5 )) or (j - i = = n - n / 5 )): print ( "*" ,end = " " ) elif ((i = = n / / 5 + n / / 7 ) and (j > = n / / 7 and j < = t - n / / 7 )): print ( "_" ,end = " " ) elif ((i > = n / / 5 + n / / 7 ) and (j = = n / / 7 or j = = t - n / / 7 )): print ( "|" ,end = " " ) else : print ( " " ,end = " " ) print ( "\n" ); # Driver method if __name__ = = '__main__' : # Get the width of # the Hut in n n = 15 # Print the Hut hut_pattern(n) # This code is contributed by # Surendra_Gangwar |
C#
// C# Program to draw a hut pattern using System; class GFG { // Program to print the Hut public static void hut_pattern( int n) { int i, j, t; if (n % 2 == 0) { n++; } for (i = 0; i <= n - n / 3; i++) { for (j = 0; j < n; j++) { t = 2 * n / 5; if (t % 2 != 0) { t--; } if (i == n / 5 || i == n - n / 3 || (j == n - 1 && i >= n / 5) || (j >= n / 5 && j < n - n / 5 && i == 0) || (j == 0 && i >= n / 5) || (j == t && i > n / 5) || (i <= n / 5 && (i + j == n / 5 || j - i == n / 5)) || (j - i == n - n / 5)) { Console.Write( "*" ); } else if (i == n / 5 + n / 7 && (j >= n / 7 && j <= t - n / 7)) { Console.Write( "_" ); } else if (i >= n / 5 + n / 7 && (j == n / 7 || j == t - n / 7)) { Console.Write( "|" ); } else { Console.Write( " " ); } } Console.Write( "\n" ); } } // Driver Code static void Main() { // Get the width of the Hut in n int n = 20; // Print the Hut hut_pattern(n); } } // This code is contributed by DrRoot_ |
Javascript
<script> // Javascript program to draw a hut pattern // Program to print the Hut function hut_pattern(n) { var i, j, t; if (n % 2 == 0) { n++; } for (i = 0; i <= n - parseInt(n / 3); i++) { for (j = 0; j < n; j++) { t = parseInt(2 * n / 5); if (t % 2 != 0) { t--; } if (i == parseInt(n / 5) || i == n - parseInt(n / 3) || (j == n - 1 && i >= parseInt(n / 5)) || (j >= parseInt(n / 5) && j < n - parseInt(n / 5) && i == 0) || (j == 0 && i >= parseInt(n / 5)) || (j == t && i > parseInt(n / 5)) || (i <= parseInt(n / 5) && (i + j == parseInt(n / 5) || j - i == parseInt(n / 5))) || (j - i == n - parseInt(n / 5))) { document.write( " *" ); } else if (i == parseInt(n / 5) + parseInt(n / 7) && (j >= parseInt(n / 7) && j <= t - parseInt(n / 7))) { document.write( "_" ); } else if (i >= parseInt(n / 5) + parseInt(n / 7) && (j == parseInt(n / 7) || j == parseInt(t - n / 7))) { document.write( "| " ); } else { document.write( " " ); } } document.write( " <br/> " ); } } // Driver code // Get the width of the Hut in n var n = 15; // Print the Hut hut_pattern(n); // This code is contributed by Amit Katiyar </script> |
********** * * * * * * *************** * * * * ___ * * * | | * * * | | * * * | | * * * | | * * ***************
Time complexity: O(n) where n is given the width of the hut
Auxiliary space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!