Sunday, December 29, 2024
Google search engine
HomeData Modelling & AIProgram to print factors of a number in pairs

Program to print factors of a number in pairs

Given a number n, the task of the programmer is to print the factors of the number in such a way that they occur in pairs. A pair signifies that the product of the pair should result in the number itself.

Examples: 

Input : 24
Output : 1*24
2*12
3*8
4*6
Input : 50
Output : 1*50
2*25
5*10

The simplest approach for this program is that we run a loop from 1 to the square root of N and print and print ‘i’ and ‘N%i’ if the number N is dividing ‘i’. 
The mathematical reason why we run the loop till square root of N is given below:
If a*b = N where 1 < a ≤ b < N 
N = ab ≥ a^2 ⇔ a^2 ≤ N ⇔ a ≤ √N
 

C++




// CPP program to print prime factors in
// pairs.
#include <iostream>
using namespace std;
 
void printPFsInPairs(int n)
{
    for (int i = 1; i * i <= n; i++)
        if (n % i == 0)
            cout << i << "*" << n / i << endl;
}
 
// Driver code
int main()
{
    int n = 24;
    printPFsInPairs(n);
    return 0;
}


Java




// Java program to print prime factors in
// pairs.
public class GEE {
 
    static void printPFsInPairs(int n)
    {
        for (int i = 1; i * i <= n; i++)
            if (n % i == 0)
                System.out.println(i + "*" + n / i);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        int n = 24;
        printPFsInPairs(n);
    }
}


Python 3




# Python 3 program to print prime factors in
# pairs.
  
def printPFsInPairs(n):
    for i in range(1, int(pow(n, 1 / 2))+1):
        if n % i == 0:
            print(str(i) +"*"+str(int(n / i)))  
  
# Driver code
n = 24
printPFsInPairs(n)


C#




// C# program to print prime factors in
// pairs.
using System;
public class GEE {
 
    static void printPFsInPairs(int n)
    {
        for (int i = 1; i * i <= n; i++)
            if (n % i == 0)
                Console.Write(i + "*" + n / i + "\n");
    }
 
    // Driver code
    public static void Main()
    {
 
        int n = 24;
        printPFsInPairs(n);
    }
}


Javascript




<script>
 
// Javascript program to print prime factors in
// pairs.
 
function printPFsInPairs(n)
{
    for (let i = 1; i * i <= n; i++)
        if (n % i == 0)
            document.write(i + "*" + parseInt(n / i) + "<br>");
}
 
// Driver code
let n = 24;
printPFsInPairs(n);
 
</script>


PHP




<?php
// PHP program to print prime factors in
// pairs.
  
function printPFsInPairs($n)
{
    for ($i = 1; $i*$i <= $n; $i++)
        if ($n % $i == 0)
            echo $i."*". $n / $i ."\n";   
}
  
// Driver code
$n = 24;
printPFsInPairs($n);
return 0;
?>


Output

1*24
2*12
3*8
4*6







Time Complexity: O(sqrt(n)) where n is given number
Auxiliary Space: O(1)

Approach#2: Using for loop

The program first defines a function print_factor_pairs that takes a positive integer num as input. The function generates all factors of num using a list comprehension that loops through all numbers from 1 to the square root of num, and appends the pair (i, num//i) to a list if num is divisible by i. The function then iterates through the list of factor pairs and prints them in the format “i*j”. In the main code, the user inputs a number and calls the print_factor_pairs function with that number as input.

Algorithm

1. Define a function print_factor_pairs that takes a positive integer num as input.
2. Generate all factors of num using a list comprehension that loops through all numbers from 1 to the square root of num, and appends the pair (i, num//i) to a list if num is divisible by i.
3. Iterate through the list of factor pairs and print them in the format “i*j”.
4. In the main code, input a number from the user and call the print_factor_pairs function with that number as input.

C++




// C++ program to print factors in pairs
#include <iostream>
#include <vector>
 
using namespace std;
 
// Function to print factors in pairs
void printFactorPairs(int num) {
    vector<pair<int, int>> factors;
    for (int i = 1; i * i <= num; i++) {
        if (num % i == 0) {
            int factor1 = i;
            int factor2 = num / i;
            factors.push_back(make_pair(factor1, factor2));
        }
    }
     
    // Print factor pairs
    for (auto pair : factors) {
        cout << pair.first << "*" << pair.second << endl;
    }
}
 
// Main code
int main() {
    int num = 24;
    printFactorPairs(num);
     
    return 0;
}
// This code is contributed by Shivam Tiwari


Java




import java.util.ArrayList;
import java.util.AbstractMap.SimpleEntry;
import java.util.List;
 
public class GFG {
    // Function to print factors in pairs
    public static void printFactorPairs(int num) {
        List<SimpleEntry<Integer, Integer>> factors = new ArrayList<>();
        for (int i = 1; i * i <= num; i++) {
            if (num % i == 0) {
                int factor1 = i;
                int factor2 = num / i;
                factors.add(new SimpleEntry<>(factor1, factor2));
            }
        }
 
        // Print factor pairs
        for (SimpleEntry<Integer, Integer> pair : factors) {
            System.out.println(pair.getKey() + "*" + pair.getValue());
        }
    }
 
    public static void main(String[] args) {
        int num = 24;
        printFactorPairs(num);
 
        // This code is contributed by Shivam Tiwari
    }
}


Python3




# function to print factors in pairs
def print_factor_pairs(num):
    factors = [(i, num//i) for i in range(1, int(num**0.5)+1) if num % i == 0]
    for pair in factors:
        print(f"{pair[0]}*{pair[1]}")
 
# main code
num = 24
print_factor_pairs(num)


C#




using System;
using System.Collections.Generic;
 
public class GFG
{
    // Function to print factors in pairs
    public static void PrintFactorPairs(int num)
    {
        List<Tuple<int, int>> factors = new List<Tuple<int, int>>();
        for (int i = 1; i * i <= num; i++)
        {
            if (num % i == 0)
            {
                int factor1 = i;
                int factor2 = num / i;
                factors.Add(Tuple.Create(factor1, factor2));
            }
        }
 
        // Print factor pairs
        foreach (var pair in factors)
        {
            Console.WriteLine(pair.Item1 + "*" + pair.Item2);
        }
    }
 
    // Main code
    public static void Main()
    {
        int num = 24;
        PrintFactorPairs(num);
 
        // This code is contributed by Shivam Tiwari
    }
}


Javascript




// Function to print factors in pairs
function printFactorPairs(num) {
    // Create an empty array to store the factor pairs
    const factors = [];
 
    // Loop through numbers from 1 to the square root of num
    for (let i = 1; i * i <= num; i++) {
        // Check if i is a factor of num
        if (num % i === 0) {
            // If i is a factor, calculate its pair factor
            const factor1 = i;
            const factor2 = num / i;
 
            // Add the pair to the factors array
            factors.push([factor1, factor2]);
        }
    }
 
    // Print factor pairs
    for (const [factor1, factor2] of factors) {
        console.log(factor1 + "*" + factor2);
    }
}
 
// Main code
    // Input number for which factor pairs need to be found
    const num = 24;
 
    // Call the function to print factor pairs
    printFactorPairs(num);
 
 
// This code is contributed by Shivam Tiwari


Output

1*24
2*12
3*8
4*6








Time complexity:  O(sqrt(num)) because the loop only goes up to the square root of num.
The time complexity of iterating through the list of factor pairs and printing them is O(sqrt(num)) because there are sqrt(num) factor pairs.

Space complexity: O(sqrt(num)) because the list of factor pairs generated by the program has at most sqrt(num) elements.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments