Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIProgram to print a Hollow Triangle inside a Triangle

Program to print a Hollow Triangle inside a Triangle

Given a number N(? 8), the task is to print a Hollow Triangle inside a Triangle pattern.
Example: 
 

Input: N = 9
Output:
                *                 
              *   *               
            *       *             
          *     *     *           
        *     * * *     *         
      *                   *       
    *                       *     
  *                           *   
* * * * * * * * * * * * * * * * * 

 

Approach: 
 

Let i be the index for rows and j be the index for columns. Then: 
 

  • For sides of outer triangle: 
    If the index of column(j) is equals to (N – i + 1) or (N + i – 1), then ‘*’ is printed for equal sides of outer triangle. 
     
if(j == (N - i + 1)
   || j == (N + i - 1) {
  print('*')
}
  •  
  • For sides of inner triangle: 
    If the (index of row(i) is less than (N – 4) and greater than (4) and index of column(j) is equals to (N – i + 4) or (N + i + 4), then ‘*’ is printed for equal sides of inner triangle. 
     
if(  (i >= 4 
     && i <= n - 4) 
  && (j == N - i + 4 
     || j == N + i - 4) ) {
    print('*')
}
  •  
  • For bases of the outer triangle: 
    If the index of row(i) is equal to N, then ‘*’ is printed for the base of outer triangle. 
     
if(i == N) {
   print('*')
}
  •  
  • For bases of the inner triangle: 
    If the index of row(i) is equals (N – 4) and the column index(j) must be greater than equals to (N – (N – 2*4)), and j is less than equals to (N + N – 2*4), then ‘*’ is printed for the base of inner triangle. 
     
if( (i == N - 4) 
 && (j >= N - (N - 2 * 4) ) 
 && (j <= n + n - 2 * 4) ) ) {
   print('*')
}
  •  

Below is the implementation of the above approach: 
 

CPP




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the pattern
void printPattern(int n)
{
 
    int i, j;
 
    // Loop for rows
    for (i = 1; i <= n; i++) {
 
        // Loop for column
        for (j = 1; j < 2 * n; j++) {
 
            // For printing equal sides
            // of outer triangle
            if (j == (n - i + 1)
                || j == (n + i - 1)) {
                cout << "* ";
            }
 
            // For printing equal sides
            // of inner triangle
            else if ((i >= 4 && i <= n - 4)
                     && (j == n - i + 4
                         || j == n + i - 4)) {
 
                cout << "* ";
            }
 
            // For printing base
            // of both triangle
            else if (i == n
                     || (i == n - 4
                         && j >= n - (n - 2 * 4)
                         && j <= n + n - 2 * 4)) {
 
                cout << "* ";
            }
 
            // For spacing between the triangle
            else {
                cout << " "
                     << " ";
            }
        }
        cout << "\n";
    }
}
 
// Driver Code
int main()
{
    int N = 9;
 
    printPattern(N);
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
  
// Function to print the pattern
static void printPattern(int n)
{
  
    int i, j;
  
    // Loop for rows
    for (i = 1; i <= n; i++) {
  
        // Loop for column
        for (j = 1; j < 2 * n; j++) {
  
            // For printing equal sides
            // of outer triangle
            if (j == (n - i + 1)
                || j == (n + i - 1)) {
                System.out.print("* ");
            }
  
            // For printing equal sides
            // of inner triangle
            else if ((i >= 4 && i <= n - 4)
                     && (j == n - i + 4
                         || j == n + i - 4)) {
  
                System.out.print("* ");
            }
  
            // For printing base
            // of both triangle
            else if (i == n
                     || (i == n - 4
                         && j >= n - (n - 2 * 4)
                         && j <= n + n - 2 * 4)) {
  
                System.out.print("* ");
            }
  
            // For spacing between the triangle
            else {
                System.out.print(" "
                    + " ");
            }
        }
        System.out.print("\n");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    int N = 9;
  
    printPattern(N);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 implementation of the above approach
 
# Function to print the pattern
def printPattern(n):
 
    # Loop for rows
    for i in range(1, n + 1):
 
        # Loop for column
        for j in range(1, 2 * n):
 
            # For printing equal sides
            # of outer triangle
            if (j == (n - i + 1)
                or j == (n + i - 1)):
                print("* ",end="")
 
            # For printing equal sides
            # of inner triangle
            elif ((i >= 4 and i <= n - 4)
                    and (j == n - i + 4
                        or j == n + i - 4)):
 
                print("* ",end="")
 
            # For printing base
            # of both triangle
            elif (i == n
                    or (i == n - 4
                        and j >= n - (n - 2 * 4)
                        and j <= n + n - 2 * 4)):
 
                print("* ", end="")
 
            # For spacing between the triangle
            else :
                print(" "+" ", end="")
 
        print()
 
# Driver Code
N = 9
 
printPattern(N)
 
# This code is contributed by mohit kumar 29


C#




// C# implementation of the above approach
using System;
 
class GFG{
   
// Function to print the pattern
static void printPattern(int n)
{
   
    int i, j;
   
    // Loop for rows
    for (i = 1; i <= n; i++) {
   
        // Loop for column
        for (j = 1; j < 2 * n; j++) {
   
            // For printing equal sides
            // of outer triangle
            if (j == (n - i + 1)
                || j == (n + i - 1)) {
                Console.Write("* ");
            }
   
            // For printing equal sides
            // of inner triangle
            else if ((i >= 4 && i <= n - 4)
                     && (j == n - i + 4
                         || j == n + i - 4)) {
   
                Console.Write("* ");
            }
   
            // For printing base
            // of both triangle
            else if (i == n
                     || (i == n - 4
                         && j >= n - (n - 2 * 4)
                         && j <= n + n - 2 * 4)) {
   
                Console.Write("* ");
            }
   
            // For spacing between the triangle
            else {
                Console.Write(" "
                    + " ");
            }
        }
        Console.Write("\n");
    }
}
   
// Driver Code
public static void Main(String[] args)
{
    int N = 9;
   
    printPattern(N);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
      // JavaScript implementation of the above approach
 
      // Function to print the pattern
      function printPattern(n) {
        var i, j;
 
        // Loop for rows
        for (i = 1; i <= n; i++) {
          // Loop for column
          for (j = 1; j < 2 * n; j++) {
            // For printing equal sides
            // of outer triangle
            if (j == n - i + 1 || j == n + i - 1) {
              document.write("* ");
            }
 
            // For printing equal sides
            // of inner triangle
            else if (
              i >= 4 &&
              i <= n - 4 &&
              (j == n - i + 4 || j == n + i - 4)
            ) {
              document.write("* ");
            }
 
            // For printing base
            // of both triangle
            else if (
              i == n ||
              (i == n - 4 && j >= n - (n - 2 * 4) && j <= n + n - 2 * 4)
            ) {
              document.write("* ");
            }
 
            // For spacing between the triangle
            else {
              document.write(" ");
              document.write("  ");
            }
          }
          document.write("<br>");
        }
      }
 
      // Driver Code
 
      var N = 9;
 
      printPattern(N);
       
    </script>


Output: 

                *                 
              *   *               
            *       *             
          *     *     *           
        *     * * *     *         
      *                   *       
    *                       *     
  *                           *   
* * * * * * * * * * * * * * * * *

 

Time Complexity: O(n2)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments