Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIProgram to find the Volume of an irregular tetrahedron

Program to find the Volume of an irregular tetrahedron

Given the length of edges of an irregular tetrahedron. The task is to determine the volume of that tetrahedron. Let the Edge length of pyramids be u, U, v, V, w, W. 

Examples: 

Input: u = 1000, v = 1000, w = 1000, U = 3, V = 4, W = 5
Output: 1999.9947

Input: u = 2000, v = 2000, w = 2000, U = 3, V = 4, W = 5
Output: 3999.9858

Formula to calculate the Volume of an irregular Tetrahedron in terms of its edge lengths is: 

A = \begin{vmatrix} 0 & u*u & v*v & w*w & 1 \\ u*u & 0 & W*W & V*V & 1 \\ v*v & W*W & 0 & U*U & 1 \\ w*w & V*V & W*W & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{vmatrix}

Volume = sqrt(A/288) = 
sqrt(4*u*u*v*v*w*w – u*u*(v*v + w*w – U*U)^2 – v*v(w*w + u*u – V*V)^2 – w*w(u*u + v*v – W*W)^2 + (u*u + v*v – W*W) * (w*w + u*u – V*V) * (v*v + w*w – U*U)) / 12

Below is the implementation of the above approach:  

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define db double
// Function to find the volume
void findVolume(db u, db v, db w, db U, db V, db W, db b)
{
 
    // Steps to calculate volume of a
    // Tetrahedron using formula
    db uPow = pow(u, 2);
    db vPow = pow(v, 2);
    db wPow = pow(w, 2);
    db UPow = pow(U, 2);
    db VPow = pow(V, 2);
    db WPow = pow(W, 2);
 
    db a = 4 * (uPow * vPow * wPow)
        - uPow * pow((vPow + wPow - UPow), 2)
        - vPow * pow((wPow + uPow - VPow), 2)
        - wPow * pow((uPow + vPow - WPow), 2)
        + (vPow + wPow - UPow) * (wPow + uPow - VPow)
        * (uPow + vPow - WPow);
    db vol = sqrt(a);
    vol /= b;
 
    cout << fixed << setprecision(4) << vol;
}
 
// Driver code
int main()
{
 
    // edge lengths
    db u = 1000, v = 1000, w = 1000;
    db U = 3, V = 4, W = 5;
    db b = 12;
 
    findVolume(u, v, w, U, V, W, b);
 
    return 0;
}


Java




// Java implementation of above approach
 
import java.util.*;
import java.lang.*;
import java.io.*;
 
 
class GFG{
 
// Function to find the volume
static void findVolume(double u, double v, double w, double U,
                      double V, double W, double b)
{
 
    // Steps to calculate volume of a
    // Tetrahedron using formula
    double uPow = Math.pow(u, 2);
    double vPow = Math.pow(v, 2);
    double wPow = Math.pow(w, 2);
    double UPow = Math.pow(U, 2);
    double VPow = Math.pow(V, 2);
    double WPow = Math.pow(W, 2);
 
    double a = 4 * (uPow * vPow * wPow)
        - uPow * Math.pow((vPow + wPow - UPow), 2)
        - vPow * Math.pow((wPow + uPow - VPow), 2)
        - wPow * Math.pow((uPow + vPow - WPow), 2)
        + (vPow + wPow - UPow) * (wPow + uPow - VPow)
        * (uPow + vPow - WPow);
    double vol = Math.sqrt(a);
    vol /= b;
 
    System.out.printf("%.4f",vol);
}
 
// Driver code
public static void main(String args[])
{
 
    // edge lengths
    double u = 1000, v = 1000, w = 1000;
    double U = 3, V = 4, W = 5;
    double b = 12;
 
    findVolume(u, v, w, U, V, W, b);
}
     
}


Python3




# Python 3 implementation of above approach
 
# from math lib import everything
from math import *
 
# Function to find the volume
def findVolume(u, v, w, U, V, W, b) :
   
    # Steps to calculate volume of a
    # Tetrahedron using formula
    uPow = pow(u, 2)
    vPow = pow(v, 2)
    wPow = pow(w, 2)
    UPow = pow(U, 2)
    VPow = pow(V, 2)
    WPow = pow(W, 2)
   
    a = (4 * (uPow * vPow * wPow)
        - uPow * pow((vPow + wPow - UPow), 2)
        - vPow * pow((wPow + uPow - VPow), 2)
        - wPow * pow((uPow + vPow - WPow), 2)
        + (vPow + wPow - UPow) * (wPow + uPow - VPow)
        * (uPow + vPow - WPow))
         
    vol = sqrt(a)
    vol /= b
   
    print(round(vol,4))
  
# Driver code    
if __name__ == "__main__" :
 
    # edge lengths
    u, v, w = 1000, 1000, 1000
    U, V, W = 3, 4, 5
    b = 12
   
    findVolume(u, v, w, U, V, W, b)
 
 
# This code is contributed by ANKITRAI1


C#




// C# implementation of above approach
using System;
 
class GFG
{
 
// Function to find the volume
static void findVolume(double u, double v,
                       double w, double U,
                       double V, double W,
                       double b)
{
 
    // Steps to calculate volume of a
    // Tetrahedron using formula
    double uPow = Math.Pow(u, 2);
    double vPow = Math.Pow(v, 2);
    double wPow = Math.Pow(w, 2);
    double UPow = Math.Pow(U, 2);
    double VPow = Math.Pow(V, 2);
    double WPow = Math.Pow(W, 2);
 
    double a = 4 * (uPow * vPow * wPow) -
                    uPow * Math.Pow((vPow + wPow - UPow), 2) -
                    vPow * Math.Pow((wPow + uPow - VPow), 2) -
                    wPow * Math.Pow((uPow + vPow - WPow), 2) +
                    (vPow + wPow - UPow) *
                    (wPow + uPow - VPow) * (uPow + vPow - WPow);
    double vol = Math.Sqrt(a);
    vol /= b;
 
    Console.Write(System.Math.Round(vol, 4));
}
 
// Driver code
public static void Main()
{
 
    // edge lengths
    double u = 1000, v = 1000, w = 1000;
    double U = 3, V = 4, W = 5;
    double b = 12;
 
    findVolume(u, v, w, U, V, W, b);
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP implementation of above approach
 
// Function to find the volume
function findVolume($u, $v, $w,
                    $U, $V, $W, $b)
{
 
    // Steps to calculate volume of
    // a Tetrahedron using formula
    $uPow = pow($u, 2);
    $vPow = pow($v, 2);
    $wPow = pow($w, 2);
    $UPow = pow($U, 2);
    $VPow = pow($V, 2);
    $WPow = pow($W, 2);
 
    $a = 4 * ($uPow * $vPow * $wPow) -
              $uPow * pow(($vPow + $wPow - $UPow), 2) -
              $vPow * pow(($wPow + $uPow - $VPow), 2) -
              $wPow * pow(($uPow + $vPow - $WPow), 2) +
              ($vPow + $wPow - $UPow) *
              ($wPow + $uPow - $VPow) *
              ($uPow + $vPow - $WPow);
    $vol = sqrt($a);
    $vol /= $b;
 
    echo $vol;
}
 
// Driver code
 
// edge lengths
$u = 1000;
$v = 1000;
$w = 1000;
$U = 3;
$V = 4;
$W = 5;
$b = 12;
 
findVolume($u, $v, $w, $U, $V, $W, $b);
 
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
 
// Javascript implementation of above approach
     
// Function to find the volume
function findVolume(u, v, w, U, V, W, b)
{
     
    // Steps to calculate volume of a
    // Tetrahedron using formula
    let uPow = Math.pow(u, 2);
    let vPow = Math.pow(v, 2);
    let wPow = Math.pow(w, 2);
    let UPow = Math.pow(U, 2);
    let VPow = Math.pow(V, 2);
    let WPow = Math.pow(W, 2);
     
    let a = 4 * (uPow * vPow * wPow) -
          uPow * Math.pow((vPow + wPow - UPow), 2) -
          vPow * Math.pow((wPow + uPow - VPow), 2) -
          wPow * Math.pow((uPow + vPow - WPow), 2) +
          (vPow + wPow - UPow) * (wPow + uPow - VPow) *
          (uPow + vPow - WPow);
           
    let vol = Math.sqrt(a);
    vol /= b;
     
    document.write(vol.toFixed(4));
}
 
// Driver code
 
// Edge lengths
let u = 1000, v = 1000, w = 1000;
let U = 3, V = 4, W = 5;
let b = 12;
 
findVolume(u, v, w, U, V, W, b);
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

1999.9947

 

Time Complexity: O(logn) as using inbuilt pow function

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments