Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AIProgram to Find the value of cos(nΘ)

Program to Find the value of cos(nΘ)

Given a value of cos(?) and a variable n      . The task is to find the value of cos(n?) using property of trigonometric functions.
Note: n <= 15.
Examples
 

Input : cos(?) = 0.5, n = 10
Output : -0.5

Input :cos(?) = 0.5, n = 3
Output : -0.995523

 

The problem can be solved using De moivre’s theorem and Binomial theorem as described below:
Using De-Moivre’s theorem, we have

    \begin{align*} \cos(n\theta)+\iota \sin(n\theta)&=(\cos \theta+\iota \sin \theta)^n\\ &=\cos^n \theta +\binom{n}{1} \cos^{n-1} \theta (\iota \sin \theta)+\binom{n}{2} \cos^{n-2} \theta (\iota \sin \theta)^2+\\ & \binom{n}{3} \cos^{n-3} \theta (\iota \sin \theta)^3+ \cdots \\ \end{align*} Equating the result to real part to get the value of $\cos n\theta$ finally, we have\\ $\cos (n \theta)=\binom{n}{0}\cos^{n}\theta \sin^0 \theta-\binom{n}{2}\cos^{n-2}\theta \sin^2 \theta+\binom{n}{4}\cos^{n-4}\theta \sin^4 \theta- \cdots$ \\ \\ As we have value of $\cos \theta$, \\ we can find value of $\sin \theta $\\ $$\sin \theta=\sqrt{1-\cos^2 \theta}$$

Now, as the value of both sin(?) and cos(?) is known. Put the values in above equation to get the answer.
Below is the implementation of the above idea: 
 

C++




// CPP program to find the value of cos(n-theta)
 
#include <bits/stdc++.h>
 
#define MAX 16
 
using namespace std;
 
int nCr[MAX][MAX] = { 0 };
 
// Function to calculate the binomial
// coefficient upto 15
void binomial()
{
    // use simple DP to find coefficient
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j <= i; j++) {
            if (j == 0 || j == i)
                nCr[i][j] = 1;
            else
                nCr[i][j] = nCr[i - 1][j] + nCr[i - 1][j - 1];
        }
    }
}
 
// Function to find the value of cos(n-theta)
double findCosnTheta(double cosTheta, int n)
{
    // find sinTheta from cosTheta
    double sinTheta = sqrt(1 - cosTheta * cosTheta);
 
    // to store required answer
    double ans = 0;
 
    // use to toggle sign in sequence.
    int toggle = 1;
 
    for (int i = 0; i <= n; i += 2) {
        ans = ans + nCr[n][i] * pow(cosTheta, n - i) *
                              pow(sinTheta, i) * toggle;
        toggle = toggle * -1;
    }
 
    return ans;
}
 
// Driver code
int main()
{
    binomial();
 
    double cosTheta = 0.5;
 
    int n = 10;
 
    cout << findCosnTheta(cosTheta, n) << endl;
 
    return 0;
}


Java




// Java program to find the value of cos(n-theta)
 
class GFG
{
    static int MAX=16;
    static int[][] nCr=new int[MAX][MAX];
 
// Function to calculate the binomial
// coefficient upto 15
static void binomial()
{
    // use simple DP to find coefficient
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j <= i; j++) {
            if (j == 0 || j == i)
                nCr[i][j] = 1;
            else
                nCr[i][j] = nCr[i - 1][j] + nCr[i - 1][j - 1];
        }
    }
}
 
// Function to find the value of cos(n-theta)
static double findCosnTheta(double cosTheta, int n)
{
    // find sinTheta from cosTheta
    double sinTheta = Math.sqrt(1 - cosTheta * cosTheta);
 
    // to store required answer
    double ans = 0;
 
    // use to toggle sign in sequence.
    int toggle = 1;
 
    for (int i = 0; i <= n; i += 2) {
        ans = ans + nCr[n][i] * Math.pow(cosTheta, n - i) *
                            Math.pow(sinTheta, i) * toggle;
        toggle = toggle * -1;
    }
 
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    binomial();
 
    double cosTheta = 0.5;
 
    int n = 10;
 
    System.out.println(String.format("%.5f",findCosnTheta(cosTheta, n)));
}
}
// This code is contributed by mits


Python3




# Python3 program to find the value of cos(n-theta)
 
import math
MAX=16
nCr=[[0 for i in range(MAX)] for i in range(MAX)]
 
# Function to calculate the binomial
# coefficient upto 15
def binomial():
     
    # use simple DP to find coefficient
    for i in range(MAX):
        for j in range(0,i+1):
            if j == 0 or j == i:
                nCr[i][j] = 1
            else:
                nCr[i][j] = nCr[i - 1][j] + nCr[i - 1][j - 1]
 
# Function to find the value of cos(n-theta)
def findCosnTheta(cosTheta,n):
     
    # find sinTheta from cosTheta
    sinTheta = math.sqrt(1 - cosTheta * cosTheta)
     
    # to store the required answer
    ans = 0
     
    # use to toggle sign in sequence.
    toggle = 1
    for i in range(0,n+1,2):
        ans = ans + nCr[n][i]*(cosTheta**(n - i)) *(sinTheta**i) * toggle
        toggle = toggle * -1
    return ans
     
# Driver code
if __name__=='__main__':
    binomial()
    cosTheta = 0.5
    n = 10
    print(findCosnTheta(cosTheta, n))
     
# this code is contributed by sahilshelangia


C#




// C# program to find the value of cos(n-theta)
using System;
public class GFG{
    static int MAX=16;
    static int [,]nCr=new int[MAX,MAX];
  
    // Function to calculate the binomial
    // coefficient upto 15
    static void binomial()
    {
        // use simple DP to find coefficient
        for (int i = 0; i < MAX; i++) {
            for (int j = 0; j <= i; j++) {
                if (j == 0 || j == i)
                    nCr[i,j] = 1;
                else
                    nCr[i,j] = nCr[i - 1,j] + nCr[i - 1,j - 1];
            }
        }
    }
 
    // Function to find the value of cos(n-theta)
    static double findCosnTheta(double cosTheta, int n)
    {
        // find sinTheta from cosTheta
        double sinTheta = Math.Sqrt(1 - cosTheta * cosTheta);
 
        // to store required answer
        double ans = 0;
 
        // use to toggle sign in sequence.
        int toggle = 1;
 
        for (int i = 0; i <= n; i += 2) {
            ans = ans + nCr[n,i] * Math.Pow(cosTheta, n - i) *
                                Math.Pow(sinTheta, i) * toggle;
            toggle = toggle * -1;
        }
 
        return ans;
    }
 
    // Driver code
    public static void Main()
    {
        binomial();
 
        double cosTheta = 0.5;
        int n = 10;
        Console.WriteLine(findCosnTheta(cosTheta, n));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to find the value of cos(n-theta)
 
MAX = 16
 
var nCr = Array.from(Array(MAX), () => new Array(MAX));
 
// Function to calculate the binomial
// coefficient upto 15
function binomial()
{
    // use simple DP to find coefficient
    for (var i = 0; i < MAX; i++) {
        for (var j = 0; j <= i; j++) {
            if (j == 0 || j == i)
                nCr[i][j] = 1;
            else
                nCr[i][j] = nCr[i - 1][j] + nCr[i - 1][j - 1];
        }
    }
}
 
// Function to find the value of cos(n-theta)
function findCosnTheta(cosTheta, n)
{
    // find sinTheta from cosTheta
    var sinTheta = Math.sqrt(1 - cosTheta * cosTheta);
 
    // to store required answer
    var ans = 0;
 
    // use to toggle sign in sequence.
    var toggle = 1;
 
    for (var i = 0; i <= n; i += 2) {
        ans = ans + nCr[n][i] * Math.pow(cosTheta, n - i) *
                            Math.pow(sinTheta, i) * toggle;
        toggle = toggle * -1;
    }
 
    return ans.toFixed(1);
}
 
// Driver code
binomial();
var cosTheta = 0.5;
var n = 10;
document.write( findCosnTheta(cosTheta, n));
 
</script>


Output: 

-0.5

 

Time Complexity: O(MAX2)

Auxiliary Space: O(MAX2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments