Given an integer N. The task is to find the Nth prime number.
Examples:
Input : 5
Output : 11Input : 16
Output : 53Input : 1049
Output : 8377
Approach:
- Find the prime numbers up to MAX_SIZE using Sieve of Eratosthenes.
- Store all primes in a vector.
- For a given number N, return the element at (N-1)th index in a vector.
Below is the implementation of the above approach:
C++
// C++ program to the nth prime number#include <bits/stdc++.h>using namespace std;// initializing the max value#define MAX_SIZE 1000005// Function to generate N prime numbers using// Sieve of Eratosthenesvoid SieveOfEratosthenes(vector<int>& primes){ // Create a boolean array "IsPrime[0..MAX_SIZE]" and // initialize all entries it as true. A value in // IsPrime[i] will finally be false if i is // Not a IsPrime, else true. bool IsPrime[MAX_SIZE]; memset(IsPrime, true, sizeof(IsPrime)); for (int p = 2; p * p < MAX_SIZE; p++) { // If IsPrime[p] is not changed, then it is a prime if (IsPrime[p] == true) { // Update all multiples of p greater than or // equal to the square of it // numbers which are multiple of p and are // less than p^2 are already been marked. for (int i = p * p; i < MAX_SIZE; i += p) IsPrime[i] = false; } } // Store all prime numbers for (int p = 2; p < MAX_SIZE; p++) if (IsPrime[p]) primes.push_back(p);}// Driver Codeint main(){ // To store all prime numbers vector<int> primes; // Function call SieveOfEratosthenes(primes); cout << "5th prime number is " << primes[4] << endl; cout << "16th prime number is " << primes[15] << endl; cout << "1049th prime number is " << primes[1048]; return 0;} |
Java
// Java program to the nth prime number import java.util.ArrayList;class GFG{ // initializing the max value static int MAX_SIZE = 1000005; // To store all prime numbers static ArrayList<Integer> primes = new ArrayList<Integer>(); // Function to generate N prime numbers // using Sieve of Eratosthenes static void SieveOfEratosthenes() { // Create a boolean array "IsPrime[0..MAX_SIZE]" // and initialize all entries it as true. // A value in IsPrime[i] will finally be false // if i is Not a IsPrime, else true. boolean [] IsPrime = new boolean[MAX_SIZE]; for(int i = 0; i < MAX_SIZE; i++) IsPrime[i] = true; for (int p = 2; p * p < MAX_SIZE; p++) { // If IsPrime[p] is not changed, // then it is a prime if (IsPrime[p] == true) { // Update all multiples of p greater than or // equal to the square of it // numbers which are multiple of p and are // less than p^2 are already been marked. for (int i = p * p; i < MAX_SIZE; i += p) IsPrime[i] = false; } } // Store all prime numbers for (int p = 2; p < MAX_SIZE; p++) if (IsPrime[p] == true) primes.add(p); } // Driver Code public static void main (String[] args) { // Function call SieveOfEratosthenes(); System.out.println("5th prime number is " + primes.get(4)); System.out.println("16th prime number is " + primes.get(15)); System.out.println("1049th prime number is " + primes.get(1048)); }}// This code is contributed by ihritik |
Python3
# Python3 program to the nth prime number primes = []# Function to generate N prime numbers using # Sieve of Eratosthenes def SieveOfEratosthenes(): n = 1000005 # Create a boolean array "prime[0..n]" and # initialize all entries it as true. A value # in prime[i] will finally be false if i is # Not a prime, else true. prime = [True for i in range(n + 1)] p = 2 while (p * p <= n): # If prime[p] is not changed, # then it is a prime if (prime[p] == True): # Update all multiples of p for i in range(p * p, n + 1, p): prime[i] = False p += 1 # Print all prime numbers for p in range(2, n + 1): if prime[p]: primes.append(p) # Driver codeif __name__=='__main__': # Function call SieveOfEratosthenes() print("5th prime number is", primes[4]); print("16th prime number is", primes[15]); print("1049th prime number is", primes[1048]); # This code is contributed by grand_master |
C#
// C# program to the nth prime number using System;using System.Collections;class GFG{ // initializing the max value static int MAX_SIZE = 1000005;// To store all prime numbersstatic ArrayList primes = new ArrayList();// Function to generate N prime numbers using // Sieve of Eratosthenesstatic void SieveOfEratosthenes() { // Create a boolean array "IsPrime[0..MAX_SIZE]" // and initialize all entries it as true. // A value in IsPrime[i] will finally be false // if i is Not a IsPrime, else true. bool [] IsPrime = new bool[MAX_SIZE]; for(int i = 0; i < MAX_SIZE; i++) IsPrime[i] = true; for (int p = 2; p * p < MAX_SIZE; p++) { // If IsPrime[p] is not changed, // then it is a prime if (IsPrime[p] == true) { // Update all multiples of p greater than or // equal to the square of it // numbers which are multiple of p and are // less than p^2 are already been marked. for (int i = p * p; i < MAX_SIZE; i += p) IsPrime[i] = false; } } // Store all prime numbers for (int p = 2; p < MAX_SIZE; p++) if (IsPrime[p] == true) primes.Add(p);} // Driver Codepublic static void Main () { // Function call SieveOfEratosthenes(); Console.WriteLine("5th prime number is " + primes[4]); Console.WriteLine("16th prime number is " + primes[15]); Console.WriteLine("1049th prime number is " + primes[1048]);}}// This code is contributed by ihritik |
Javascript
<script>// Javascript program to the nth prime number// initializing the max valuevar MAX_SIZE = 1000005;// Function to generate N prime numbers using// Sieve of Eratosthenesfunction SieveOfEratosthenes(primes){ // Create a boolean array // "IsPrime[0..MAX_SIZE]" and // initialize all entries it as true. // A value in // IsPrime[i] will finally be false if i is // Not a IsPrime, else true. var IsPrime = Array(MAX_SIZE).fill(true); var p,i; for (p = 2; p * p < MAX_SIZE;p++) { // If IsPrime[p] is not changed, // then it is a prime if (IsPrime[p] == true) { // Update all multiples of p // greater than or // equal to the square of it // numbers which are multiple // of p and are // less than p^2 are already // been marked. for(i = p * p; i < MAX_SIZE; i += p) IsPrime[i] = false; } } // Store all prime numbers for (p = 2; p < MAX_SIZE; p++) if (IsPrime[p]) primes.push(p);}// Driver Code // To store all prime numbers var primes = []; // Function call SieveOfEratosthenes(primes); document.write( "5th prime number is "+primes[4]+"<br>" ); document.write( "16th prime number is "+primes[15]+"<br>" ); document.write( "1049th prime number is "+primes[1048]+"<br>" );</script> |
5th prime number is 11 16th prime number is 53 1049th prime number is 8377
Another approach :
- for finding prime number at given position write a isPrime function to check number is prime or not
- write a function to get prime number at given position
Below is the implementation of the above approach :
C++
// c++ program to find the n-th prime number#include <bits/stdc++.h>using namespace std;// function to check given number is prime or not// basic idea is numbers not divided by any primes are primesint isPrime(int k){ // Corner cases if (k <= 1) return 0; if (k==2 || k==3) return 1; // below 5 there is only two prime numbers 2 and 3 if (k % 2 == 0 || k % 3 == 0) return 0; // Using concept of prime number can be represented in form of (6*k + 1) or(6*k - 1) for (int i = 5; i * i <= k; i = i + 6) if (k % i == 0 || k % (i + 2) == 0) return 0; return 1;}// function which gives prime at position nint nThPrime(int n){ int i=2; while(n>0) { // each time if a prime number found decrease n if(isPrime(i)) n--; i++; //increase the integer to go ahead } i-=1; // since decrement of k is being done before //Increment of i , so i should be decreased by 1 return i;}int main() { cout<<"5th prime number is : "<<nThPrime(5)<<"\n"; cout<<"7th prime number is : "<<nThPrime(7)<<"\n"; cout<<"10th prime number is : "<<nThPrime(10)<<"\n"; return 0;}// This code is contributed by Ujjwal Kumar Bhardwaj |
Java
// Java program to find the n-th prime numberimport java.util.*;class GFG { // function to check given number is prime or not // basic idea is numbers not divided by any primes are // primes static int isPrime(int k) { // Corner cases if (k <= 1) return 0; if (k == 2 || k == 3) return 1; // below 5 there is only two prime numbers 2 and 3 if (k % 2 == 0 || k % 3 == 0) return 0; // Using concept of prime number can be represented // in form of (6*k + 1) or(6*k - 1) for (int i = 5; i * i <= k; i = i + 6) if (k % i == 0 || k % (i + 2) == 0) return 0; return 1; } // function which gives prime at position n static int nThPrime(int n) { int i = 2; while (n > 0) { // each time if a prime number found decrease n if (isPrime(i) == 1) n--; i++; // increase the integer to go ahead } i -= 1; // since decrement of k is being done before // Increment of i , so i should be decreased // by 1 return i; } public static void main(String[] args) { System.out.println("5th prime number is : " + nThPrime(5)); System.out.println("7th prime number is : " + nThPrime(7)); System.out.println("10th prime number is : " + nThPrime(10)); }}// This code is contributed by phasing17 |
Python3
# Python3 program to find the n-th prime number# function to check given number is prime or not# basic idea is numbers not divided by any primes are primesdef isPrime(k): # Corner cases if (k <= 1): return 0 if (k == 2 or k == 3): return 1 # below 5 there is only two prime numbers 2 and 3 if (k % 2 == 0 or k % 3 == 0): return 0 # Using concept of prime number can be represented in form of (6*k + 1) or(6*k - 1) for i in range(5, 1 + int(k ** 0.5), 6): if (k % i == 0 or k % (i + 2) == 0): return 0 return 1# function which gives prime at position ndef nThPrime(n): i = 2 while(n > 0): # each time if a prime number found decrease n if(isPrime(i)): n -= 1 i += 1 # increase the integer to go ahead i -= 1 # since decrement of k is being done before # Increment of i , so i should be decreased by 1 return i# Driver codeprint("5th prime number is :", nThPrime(5))print("7th prime number is :", nThPrime(7))print("10th prime number is :", nThPrime(10))# This code is contributed by phasing17 |
C#
// C# program to find the n-th prime numberusing System;using System.Collections.Generic;class GFG{ // function to check given number is prime or not // basic idea is numbers not divided by any primes are // primes static int isPrime(int k) { // Corner cases if (k <= 1) return 0; if (k == 2 || k == 3) return 1; // below 5 there is only two prime numbers 2 and 3 if (k % 2 == 0 || k % 3 == 0) return 0; // Using concept of prime number can be represented // in form of (6*k + 1) or(6*k - 1) for (int i = 5; i * i <= k; i = i + 6) if (k % i == 0 || k % (i + 2) == 0) return 0; return 1; } // function which gives prime at position n static int nThPrime(int n) { int i = 2; while (n > 0) { // each time if a prime number found decrease n if (isPrime(i) == 1) n--; i++; // increase the integer to go ahead } i -= 1; // since decrement of k is being done before // Increment of i , so i should be decreased // by 1 return i; } public static void Main(string[] args) { Console.WriteLine("5th prime number is : " + nThPrime(5)); Console.WriteLine("7th prime number is : " + nThPrime(7)); Console.WriteLine("10th prime number is : " + nThPrime(10)); }}// This code is contributed by phasing17 |
Javascript
// JS program to find the n-th prime number// function to check given number is prime or not// basic idea is numbers not divided by any primes are primesfunction isPrime(k){ // Corner cases if (k <= 1) return 0; if (k==2 || k==3) return 1; // below 5 there is only two prime numbers 2 and 3 if (k % 2 == 0 || k % 3 == 0) return 0; // Using concept of prime number can be represented in form of (6*k + 1) or(6*k - 1) for (let i = 5; i * i <= k; i = i + 6) if (k % i == 0 || k % (i + 2) == 0) return 0; return 1;}// function which gives prime at position nfunction nThPrime(n){ let i=2; while(n>0) { // each time if a prime number found decrease n if(isPrime(i)) n--; i++; //increase the integer to go ahead } i-=1; // since decrement of k is being done before //Increment of i , so i should be decreased by 1 return i;}// Driver codeconsole.log("5th prime number is : "+nThPrime(5));console.log("7th prime number is : "+nThPrime(7));console.log("10th prime number is : "+nThPrime(10));// This code is contributed by phasing17 |
5th prime number is : 11 7th prime number is : 17 10th prime number is : 29
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
