Given two integers A and B, representing the length of the semi-major and semi-minor axes of a Hyperbola, the task is to find the length of the latus rectum of the hyperbola.
Examples:
Input: A = 3, B = 2
Output: 2.66666Input: A = 6, B = 3
Output: 3
Approach: The Latus Rectum of a hyperbola is the focal chord perpendicular to the major axis and the length of the Latus Rectum is equal to (Length of the minor axis )2/(length of major axis).
Follow the steps below to solve the given problem:
- Find the length of the major axis of the hyperbola and store it in a variable, say major.
- Find the length of the minor axis of the hyperbola and store it in a variable, say minor.
- After completing the above steps, print the value of (minor*minor)/major as the resultant length of the Latus Rectum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <iostream> using namespace std; // Function to calculate the length of // the latus rectum of a hyperbola double lengthOfLatusRectum( double A, double B) { // Store the length of major axis double major = 2.0 * A; // Store the length of minor axis double minor = 2.0 * B; // Store the length of the // latus rectum double latus_rectum = (minor * minor) / major; // Return the length of the // latus rectum return latus_rectum; } // Driver Code int main() { double A = 3.0, B = 2.0; cout << lengthOfLatusRectum(A, B); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG{ // Function to calculate the length of // the latus rectum of a hyperbola static double lengthOfLatusRectum( double A, double B) { // Store the length of major axis double major = 2.0 * A; // Store the length of minor axis double minor = 2.0 * B; // Store the length of the // latus rectum double latus_rectum = (minor * minor) / major; // Return the length of the // latus rectum return latus_rectum; } // Driver Code public static void main(String[] args) { double A = 3.0 , B = 2.0 ; System.out.println(lengthOfLatusRectum(A, B)); }} // This code is contributed by Dharanendra L V. |
Python3
# Python program for the above approach # Function to calculate the length of # the latus rectum of a hyperbola def lengthOfLatusRectum(A,B): # Store the length of major axis major = 2.0 * A # Store the length of minor axis minor = 2.0 * B # Store the length of the # latus rectum latus_rectum = (minor * minor) / major # Return the length of the # latus rectum return latus_rectum # Driver Code A = 3.0 B = 2.0 print ( round (lengthOfLatusRectum(A, B), 5 )) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program for the above approach using System; class GFG { // Function to calculate the length of // the latus rectum of a hyperbola static double lengthOfLatusRectum( double A, double B) { // Store the length of major axis double major = 2.0 * A; // Store the length of minor axis double minor = 2.0 * B; // Store the length of the // latus rectum double latus_rectum = (minor * minor) / major; // Return the length of the // latus rectum return latus_rectum; } // Driver Code public static void Main () { double A = 3.0, B = 2.0; Console.WriteLine(lengthOfLatusRectum(A, B)); }} // This code is contributed by ukasp. |
Javascript
<script> // Javascript program for the above approach // Function to calculate the length of // the latus rectum of a hyperbola function lengthOfLatusRectum(A, B) { // Store the length of major axis var major = 2.0 * A; // Store the length of minor axis var minor = 2.0 * B; // Store the length of the // latus rectum var latus_rectum = (minor * minor) / major; // Return the length of the // latus rectum return latus_rectum; } // Driver Code var A = 3.0, B = 2.0; document.write(lengthOfLatusRectum(A, B)); // This code is contributed by 29AjayKumar </script> |
2.66667
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!