Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIProgram to find the Depreciation of Value

Program to find the Depreciation of Value

The value of any article or item subject to wear and tear, decreases with time. This decrease is called its Depreciation. Given three variable V1, R and T where V1 is the initial value, R is the rate of depreciation and T is the time in years. The task is to find the value of the item after T years.
Examples: 
 

Input: V1 = 200, R = 10, T = 2 
Output: 162
Input: V1 = 560, R = 5, T = 3 
Output: 480.13 
 

 

Approach: As in Compound Interest, interest is regularly added to the principal at the end of the agreed intervals of time to generate a new and fresh principal. Similarly, Depreciated value is the decreased value from the amount at the end of agreed intervals of time to generate a new Value.
Thus if V1 is the value at a certain time and R% per annum is the rate (the rate can not be more than 100%) of depreciation per year, then the value V2 at the end of T years is: 
 

Below is the implementation of the above approach : 
 

C++




// CPP program to find depreciation of the value
// initial value, rate and time are given
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the depreciation of value
float Depreciation(float v, float r, float t)
{
 
    float D = v * pow((1 - r / 100), t);
 
    return D;
}
 
// Driver Code
int main()
{
    float V1 = 200, R = 10, T = 2;
 
    cout << Depreciation(V1, R, T);
 
    return 0;
}


Java




// Java program to find depreciation of the value
// initial value, rate and time are given
import java.io.*;
 
class GFG
{
 
// Function to return the depreciation of value
static float Depreciation(float v,
                          float r, float t)
{
    float D = (float)(v * Math.pow((1 - r / 100), t));
 
    return D;
}
 
// Driver code
public static void main(String[] args)
{
    float V1 = 200, R = 10, T = 2;
     
    System.out.print(Depreciation(V1, R, T));
}
}
 
// This code is contributed by anuj_67..


Python3




# Python 3 program to find depreciation of the value
# initial value, rate and time are given
from math import pow
 
# Function to return the depreciation of value
def Depreciation(v, r, t):
    D = v * pow((1 - r / 100), t)
 
    return D
 
# Driver Code
if __name__ == '__main__':
    V1 = 200
    R = 10
    T = 2
 
    print(int(Depreciation(V1, R, T)))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find depreciation of the value
// initial value, rate and time are given
using System;
 
class GFG
{
 
// Function to return the depreciation of value
static float Depreciation(float v, float r, float t)
{
 
    float D = (float) (v * Math.Pow((1 - r / 100), t));
 
    return D;
}
 
// Driver code
public static void Main()
{
    float V1 = 200, R = 10, T = 2;
     
    Console.WriteLine(Depreciation(V1, R, T));
}
}
 
// This code is contributed by nidhiva


Javascript




// javascript program to find depreciation of the value
// initial value, rate and time are given
 
// Function to return the depreciation of value
 function Depreciation( v,  r,  t)
{
   
    var D =  v * Math.pow((1 - r / 100), t)
    return D;
}
   
// Driver code
    var V1 = 200,  R = 10,  T = 2;
    document.write(Depreciation(V1, R, T));
 
// This code is contributed by bunnyram19. 


Output: 

162

 

Time Complexity: O(1)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments