Given a:b and b:c. The task is to write a program to find ratio a:b:c
Examples:
Input: a:b = 2:3, b:c = 3:4 Output: 2:3:4 Input: a:b = 3:4, b:c = 8:9 Output: 6:8:9
Approach: The trick is to make the common term ‘b’ equal in both ratios. Therefore, multiply the first ratio by b2 (b term of second ratio) and the second ratio by b1.
Given: a:b1 and b2:c
Solution: a:b:c = (a*b2):(b1*b2):(c*b1)
For example:
If a : b = 5 : 9 and b : c = 7 : 4, then find a : b : c.
Solution:
Here, Make the common term ‘b’ equal in both ratios.
Therefore, multiply the first ratio by 7 and the second ratio by 9.
So, a : b = 35 : 63 and b : c = 63 : 36
Thus, a : b : c = 35 : 63 : 36
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Function to print a:b:c void solveProportion( int a, int b1, int b2, int c) { int A = a * b2; int B = b1 * b2; int C = b1 * c; // To print the given proportion // in simplest form. int gcd = __gcd(__gcd(A, B), C); cout << A / gcd << ":" << B / gcd << ":" << C / gcd; } // Driver code int main() { // Get the ratios int a, b1, b2, c; // Get ratio a:b1 a = 3; b1 = 4; // Get ratio b2:c b2 = 8; c = 9; // Find the ratio a:b:c solveProportion(a, b1, b2, c); return 0; } |
Java
// Java implementation of above approach import java.util.*; import java.lang.*; import java.io.*; class GFG{ static int __gcd( int a, int b){ return b== 0 ? a : __gcd(b, a%b); } // Function to print a:b:c static void solveProportion( int a, int b1, int b2, int c) { int A = a * b2; int B = b1 * b2; int C = b1 * c; // To print the given proportion // in simplest form. int gcd = __gcd(__gcd(A, B), C); System.out.print( A / gcd + ":" + B / gcd + ":" + C / gcd); } // Driver code public static void main(String args[]) { // Get the ratios int a, b1, b2, c; // Get ratio a:b1 a = 3 ; b1 = 4 ; // Get ratio b2:c b2 = 8 ; c = 9 ; // Find the ratio a:b:c solveProportion(a, b1, b2, c); } } |
Python 3
# Python 3 implementation # of above approach import math # Function to print a:b:c def solveProportion(a, b1, b2, c): A = a * b2 B = b1 * b2 C = b1 * c # To print the given proportion # in simplest form. gcd1 = math.gcd(math.gcd(A, B), C) print ( str (A / / gcd1) + ":" + str (B / / gcd1) + ":" + str (C / / gcd1)) # Driver code if __name__ = = "__main__" : # Get ratio a:b1 a = 3 b1 = 4 # Get ratio b2:c b2 = 8 c = 9 # Find the ratio a:b:c solveProportion(a, b1, b2, c) # This code is contributed # by ChitraNayal |
C#
// C# implementation of above approach using System; class GFG { static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Function to print a:b:c static void solveProportion( int a, int b1, int b2, int c) { int A = a * b2; int B = b1 * b2; int C = b1 * c; // To print the given proportion // in simplest form. int gcd = __gcd(__gcd(A, B), C); Console.Write( A / gcd + ":" + B / gcd + ":" + C / gcd); } // Driver code public static void Main() { // Get the ratios int a, b1, b2, c; // Get ratio a:b1 a = 3; b1 = 4; // Get ratio b2:c b2 = 8; c = 9; // Find the ratio a:b:c solveProportion(a, b1, b2, c); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP implementation of above approach function __gcd( $a , $b ) { return $b == 0 ? $a : __gcd( $b , $a % $b ); } // Function to print a:b:c function solveProportion( $a , $b1 , $b2 , $c ) { $A = $a * $b2 ; $B = $b1 * $b2 ; $C = $b1 * $c ; // To print the given proportion // in simplest form. $gcd = __gcd(__gcd( $A , $B ), $C ); echo ( $A / $gcd ) . ":" . ( $B / $gcd ) . ":" . ( $C / $gcd ); } // Driver code // Get the ratios // Get ratio a:b1 $a = 3; $b1 = 4; // Get ratio b2:c $b2 = 8; $c = 9; // Find the ratio a:b:c solveProportion( $a , $b1 , $b2 , $c ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript implementation of above approach function __gcd(a, b) { return b == 0 ? a : __gcd(b, a % b); } // Function to print a:b:c function solveProportion(a, b1, b2, c) { let A = a * b2; let B = b1 * b2; let C = b1 * c; // To print the given proportion // in simplest form. let gcd = __gcd(__gcd(A, B), C); document.write( A / gcd + ":" + B / gcd + ":" + C / gcd); } // Get the ratios let a, b1, b2, c; // Get ratio a:b1 a = 3; b1 = 4; // Get ratio b2:c b2 = 8; c = 9; // Find the ratio a:b:c solveProportion(a, b1, b2, c); // This code is contributed by divyeshrabadiya07. </script> |
6:8:9
Time Complexity : O(log(A+B)) ,where A=a*b2 and B = b1*b2
Space Complexity : O(1), since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!