Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIProgram to find the common ratio of three numbers

Program to find the common ratio of three numbers

Given a:b and b:c. The task is to write a program to find ratio a:b:c
Examples: 
 

Input: a:b = 2:3, b:c = 3:4
Output: 2:3:4

Input:  a:b = 3:4, b:c = 8:9
Output: 6:8:9

 

Approach: The trick is to make the common term ‘b’ equal in both ratios. Therefore, multiply the first ratio by b2 (b term of second ratio) and the second ratio by b1.
 

Given: a:b1 and b2:c 
Solution: a:b:c = (a*b2):(b1*b2):(c*b1)
For example: 
If a : b = 5 : 9 and b : c = 7 : 4, then find a : b : c.
Solution: 
Here, Make the common term ‘b’ equal in both ratios. 
Therefore, multiply the first ratio by 7 and the second ratio by 9. 
So, a : b = 35 : 63 and b : c = 63 : 36 
Thus, a : b : c = 35 : 63 : 36

Below is the implementation of the above approach: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print a:b:c
void solveProportion(int a, int b1, int b2, int c)
{
    int A = a * b2;
    int B = b1 * b2;
    int C = b1 * c;
 
    // To print the given proportion
    // in simplest form.
    int gcd = __gcd(__gcd(A, B), C);
 
    cout << A / gcd << ":"
         << B / gcd << ":"
         << C / gcd;
}
 
// Driver code
int main()
{
 
    // Get the ratios
    int a, b1, b2, c;
 
    // Get ratio a:b1
    a = 3;
    b1 = 4;
 
    // Get ratio b2:c
    b2 = 8;
    c = 9;
 
    // Find the ratio a:b:c
    solveProportion(a, b1, b2, c);
 
    return 0;
}


Java




// Java implementation of above approach
 
import java.util.*;
import java.lang.*;
import java.io.*;
class GFG{
 
static int __gcd(int a,int b){
    return b==0 ? a : __gcd(b, a%b);
}   
 
// Function to print a:b:c
static void solveProportion(int a, int b1, int b2, int c)
{
    int A = a * b2;
    int B = b1 * b2;
    int C = b1 * c;
  
    // To print the given proportion
    // in simplest form.
    int gcd = __gcd(__gcd(A, B), C);
  
    System.out.print( A / gcd + ":"
         + B / gcd + ":"
         + C / gcd);
}
  
// Driver code
public static void  main(String args[])
{
  
    // Get the ratios
    int a, b1, b2, c;
  
    // Get ratio a:b1
    a = 3;
    b1 = 4;
  
    // Get ratio b2:c
    b2 = 8;
    c = 9;
  
    // Find the ratio a:b:c
    solveProportion(a, b1, b2, c);
}
}


Python 3




# Python 3 implementation
# of above approach
import math
 
# Function to print a:b:c
def solveProportion(a, b1, b2, c):
 
    A = a * b2
    B = b1 * b2
    C = b1 * c
 
    # To print the given proportion
    # in simplest form.
    gcd1 = math.gcd(math.gcd(A, B), C)
 
    print( str(A // gcd1) + ":" +
           str(B // gcd1) + ":" +
           str(C // gcd1))
 
# Driver code
if __name__ == "__main__":
 
    # Get ratio a:b1
    a = 3
    b1 = 4
 
    # Get ratio b2:c
    b2 = 8
    c = 9
 
    # Find the ratio a:b:c
    solveProportion(a, b1, b2, c)
 
# This code is contributed
# by ChitraNayal


C#




// C# implementation of above approach
using System;
 
class GFG
{
static int __gcd(int a,int b)
{
    return b == 0 ? a : __gcd(b, a % b);
}
 
// Function to print a:b:c
static void solveProportion(int a, int b1,
                            int b2, int c)
{
    int A = a * b2;
    int B = b1 * b2;
    int C = b1 * c;
 
    // To print the given proportion
    // in simplest form.
    int gcd = __gcd(__gcd(A, B), C);
 
    Console.Write( A / gcd + ":" +
                   B / gcd + ":" +
                   C / gcd);
}
 
// Driver code
public static void Main()
{
 
    // Get the ratios
    int a, b1, b2, c;
 
    // Get ratio a:b1
    a = 3;
    b1 = 4;
 
    // Get ratio b2:c
    b2 = 8;
    c = 9;
 
    // Find the ratio a:b:c
    solveProportion(a, b1, b2, c);
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)


PHP




<?php
// PHP implementation of above approach
 
function __gcd($a, $b)
{
    return $b == 0 ? $a : __gcd($b, $a % $b);
}
 
// Function to print a:b:c
function solveProportion($a, $b1, $b2, $c)
{
    $A = $a * $b2;
    $B = $b1 * $b2;
    $C = $b1 * $c;
 
    // To print the given proportion
    // in simplest form.
    $gcd = __gcd(__gcd($A, $B), $C);
 
    echo ($A / $gcd) . ":" .
         ($B / $gcd) . ":" . ($C / $gcd);
}
 
// Driver code
 
// Get the ratios
// Get ratio a:b1
$a = 3;
$b1 = 4;
 
// Get ratio b2:c
$b2 = 8;
$c = 9;
 
// Find the ratio a:b:c
solveProportion($a, $b1, $b2, $c);
 
// This code is contributed by mits
?>


Javascript




<script>
    // Javascript implementation of above approach
     
    function __gcd(a, b)
    {
        return b == 0 ? a : __gcd(b, a % b);
    }
 
    // Function to print a:b:c
    function solveProportion(a, b1, b2, c)
    {
        let A = a * b2;
        let B = b1 * b2;
        let C = b1 * c;
 
        // To print the given proportion
        // in simplest form.
        let gcd = __gcd(__gcd(A, B), C);
 
        document.write( A / gcd + ":" + B / gcd + ":" + C / gcd);
    }
 
    // Get the ratios
    let a, b1, b2, c;
   
    // Get ratio a:b1
    a = 3;
    b1 = 4;
   
    // Get ratio b2:c
    b2 = 8;
    c = 9;
   
    // Find the ratio a:b:c
    solveProportion(a, b1, b2, c);
     
    // This code is contributed by divyeshrabadiya07.
</script>


Output: 

6:8:9

 

Time Complexity : O(log(A+B)) ,where A=a*b2 and B = b1*b2

Space Complexity : O(1), since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments