Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIProgram to determine the Quadrant of a Complex number

Program to determine the Quadrant of a Complex number

Given a complex number in the form of the string str, the task is to determine the quadrant of the cartesian plane in which this complex number lies.

Examples: 

Input: str = “1 + 1i” 
Output: Quadrant 1

Input: str = “0 + 0i” 
Output: Origin

Approach:

The idea is to first find the real and imaginary parts of a complex number. Let’s say the point is (x, iy), then the following table illustrates the position of the point with respect to the coordinates: 

Below is the implementation of the above approach: 

C++




// C++ program to determine the quadrant
// of a complex number
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to determine the quadrant
// of a complex number
void quadrant(string s)
{
    int l = s.length();
    int i;
 
    // Storing the index of '+'
    if (s.find('+') < l) {
        i = s.find('+');
    }
 
    // Storing the index of '-'
    else {
        i = s.find('-');
    }
 
    // Finding the real part
    // of the complex number
    string real = s.substr(0, i);
 
    // Finding the imaginary part
    // of the complex number
    string imaginary = s.substr(i + 1, l - 1);
 
    int x = stoi(real);
    int y = stoi(imaginary);
 
    if (x > 0 and y > 0)
        cout << "Quadrant 1";
 
    else if (x < 0 and y > 0)
        cout << "Quadrant 2";
 
    else if (x < 0 and y < 0)
        cout << "Quadrant 3";
 
    else if (x > 0 and y < 0)
        cout << "Quadrant 4";
 
    else if (x == 0 and y > 0)
        cout << "Lies on positive"
             << " Imaginary axis";
 
    else if (x == 0 and y < 0)
        cout << "Lies on negative"
             << " Imaginary axis";
 
    else if (y == 0 and x < 0)
        cout << "Lies on negative"
             << " X-axis";
 
    else if (y == 0 and x > 0)
        cout << "Lies on positive"
             << " X-axis";
 
    else
        cout << "Lies on the Origin";
}
 
// Driver code
int main()
{
    string s = "5+3i";
    quadrant(s);
    return 0;
}


Java




// Java program to determine the quadrant
// of a complex number
import java.util.*;
 
class GFG{
  
// Function to determine the quadrant
// of a complex number
static void quadrant(String s)
{
    int l = s.length();
    int i;
  
    // Storing the index of '+'
    if (s.contains("+")) {
        i = s.indexOf('+');
    }
  
    // Storing the index of '-'
    else {
        i = s.indexOf('-');
    }
  
    // Finding the real part
    // of the complex number
    String real = s.substring(0, i);
  
    // Finding the imaginary part
    // of the complex number
    String imaginary = s.substring(i + 1, l - 1);
  
    int x = Integer.valueOf(real);
    int y = Integer.valueOf(imaginary);
  
    if (x > 0 && y > 0)
        System.out.print("Quadrant 1");
  
    else if (x < 0 && y > 0)
        System.out.print("Quadrant 2");
  
    else if (x < 0 && y < 0)
        System.out.print("Quadrant 3");
  
    else if (x > 0 && y < 0)
        System.out.print("Quadrant 4");
  
    else if (x == 0 && y > 0)
        System.out.print("Lies on positive"
            + " Imaginary axis");
  
    else if (x == 0 && y < 0)
        System.out.print("Lies on negative"
            + " Imaginary axis");
  
    else if (y == 0 && x < 0)
        System.out.print("Lies on negative"
            + " X-axis");
  
    else if (y == 0 && x > 0)
        System.out.print("Lies on positive"
            + " X-axis");
  
    else
        System.out.print("Lies on the Origin");
}
  
// Driver code
public static void main(String[] args)
{
    String s = "5+3i";
    quadrant(s);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python 3 program to determine the quadrant
# of a complex number
 
# Function to determine the quadrant
# of a complex number
def quadrant(s):
    l = len(s)
    # Storing the index of '+'
    if ('+' in s):
        i = s.index('+')
 
    # Storing the index of '-'
    else:
        i = s.index('-')
 
    # Finding the real part
    # of the complex number
    real = s[0:i]
 
    # Finding the imaginary part
    # of the complex number
    imaginary = s[i + 1:l - 1]
 
    x = int(real)
    y = int(imaginary)
 
    if (x > 0 and y > 0):
        print("Quadrant 1")
 
    elif(x < 0 and y > 0):
        print("Quadrant 2")
 
    elif (x < 0 and y < 0):
        print("Quadrant 3")
 
    elif (x > 0 and y < 0):
        print("Quadrant 4")
 
    elif (x == 0 and y > 0):
        print("Lies on positive","Imaginary axis")
 
    elif (x == 0 and y < 0):
        print("Lies on negative","Imaginary axis")
 
    elif (y == 0 and x < 0):
        print("Lies on negative","X-axis")
 
    elif (y == 0 and x > 0):
        print("Lies on positive","X-axis")
 
    else:
        print("Lies on the Origin")
 
# Driver code
if __name__ == '__main__':
    s = "5+3i"
    quadrant(s)
     
# This code is contributed by Surendra_Gangwar


C#




// C# program to determine the quadrant
// of a complex number
using System;
 
class GFG{
   
// Function to determine the quadrant
// of a complex number
static void quadrant(String s)
{
    int l = s.Length;
    int i;
   
    // Storing the index of '+'
    if (s.Contains("+")) {
        i = s.IndexOf('+');
    }
   
    // Storing the index of '-'
    else {
        i = s.IndexOf('-');
    }
   
    // Finding the real part
    // of the complex number
    String real = s.Substring(0, i);
   
    // Finding the imaginary part
    // of the complex number
    String imaginary = s.Substring(i + 1, l - 2 - i);
   
    int x = Int32.Parse(real);
    int y = Int32.Parse(imaginary);
   
    if (x > 0 && y > 0)
        Console.Write("Quadrant 1");
   
    else if (x < 0 && y > 0)
        Console.Write("Quadrant 2");
   
    else if (x < 0 && y < 0)
        Console.Write("Quadrant 3");
   
    else if (x > 0 && y < 0)
        Console.Write("Quadrant 4");
   
    else if (x == 0 && y > 0)
        Console.Write("Lies on positive"
            + " Imaginary axis");
   
    else if (x == 0 && y < 0)
        Console.Write("Lies on negative"
            + " Imaginary axis");
   
    else if (y == 0 && x < 0)
        Console.Write("Lies on negative"
            + " X-axis");
   
    else if (y == 0 && x > 0)
        Console.Write("Lies on positive"
            + " X-axis");
   
    else
        Console.Write("Lies on the Origin");
}
   
// Driver code
public static void Main(String[] args)
{
    String s = "5+3i";
    quadrant(s);
}
}
  
// This code is contributed by sapnasingh4991


Javascript




<script>
// Javascript program
 
// Function to determine the quadrant
// of a complex number
function quadrant(s)
{
    var l = s.length;
    var i =0 ;
   
    // Storing the index of '+'
    if (s.indexOf("+") != -1) {
        i = s.indexOf("+");
    }
   
    // Storing the index of '-'
    else {
        i = s.indexOf("-");
    }
   
    // Finding the real part
    // of the complex number
    var real = s.substr(0, i);
   
    // Finding the imaginary part
    // of the complex number
    var imaginary = s.substr(i + 1, l - 1);
   
    var x = parseInt(real);
    var y = parseInt(imaginary);
   
    if (x > 0 && y > 0)
        document.write("Quadrant 1");
   
    else if (x < 0 && y > 0)
           document.write("Quadrant 2");
   
    else if (x < 0 && y < 0)
           document.write( "Quadrant 3");
   
    else if (x > 0 && y < 0)
          document.write( "Quadrant 4");
   
    else if (x == 0 && y > 0)
        document.write( "Lies on positive"+" Imaginary axis");
   
    else if (x == 0 && y < 0)
        document.write( "Lies on negative"+" Imaginary axis");
   
    else if (y == 0 && x < 0)
        document.write( "Lies on negative"+" X-axis");
   
    else if (y == 0 && x > 0)
        document.write( "Lies on positive"+" X-axis");
   
    else
        document.write( "Lies on the Origin");
}
   
var s = "5+3i";
quadrant(s);
</script>


Output: 

Quadrant 1

 

Time complexity: O(n) where n is the size of the given string
Auxiliary space: O(n) because extra space for string real and imaginary is being used

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments