Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIProgram to compare m^n and n^m

Program to compare m^n and n^m

Given two positive integers m and n, the task is to write a program that checks whether m^n is greater than, less than, or equal to n^m.

Examples : 

Input: m = 3, n = 10 
Output: m^n > n^m 
Explanation : 3^10=59049 which is greater than 10^3=1000

Input: m = 987654321, n = 123456987 
Output: m^n < n^m

A naive approach is to compute m^n and n^m, which causes overflow when m and n are very large. 
An efficient approach is to solve this problem using log

Given LHS = m^n and RHS = n^m. 
After taking log on both sides, LHS = n*log(m) and RHS = m*log(n) 
Then compare the LHS and RHS.

C++




// CPP program to compare which is greater
// m^n or n^m 
#include <bits/stdc++.h>
using namespace std;
 
// function to compare m^n and n^m
void check(unsigned long long m, unsigned long long int n)
    {
        // m^n
        double RHS = m * (double)log(n);
         
        // n^m
        double LHS = n * (double)log(m);
         
        if ( LHS > RHS )
            cout << "m^n > n^m";
             
        else if ( LHS < RHS )
            cout << "m^n < n^m";
             
        else
            cout << "m^n = n^m";
    }
 
// Drivers Code
int main() {
     
    unsigned long long m = 987654321, n = 123456987;
     
    // function call to compare m^n and n^m
    check(m, n);
     
    return 0;
}


Java




// Java program to compare which
// is greater m^n or n^m
import java .io.*;
 
class GFG
{
// function to compare
// m^n and n^m
static void check(long m, long n)
{
    // m^n
    double RHS = m * (double)Math.log(n);
     
    // n^m
    double LHS = n * (double)Math.log(m);
     
    if (LHS > RHS)
        System.out.print("m^n > n^m");
         
    else if (LHS < RHS)
    System.out.print("m^n < n^m");
         
    else
        System.out.print("m^n = n^m");
}
 
// Driver Code
static public void main (String[] args)
{
    long m = 987654321, n = 123456987;
 
    // function call to
    // compare m^n and n^m
    check(m, n);
}
}
 
// This code is contributed by anuj_67.


Python3




# Python3 program to compare
# which is greater m^n or n^m
import math
 
# function to compare
# m^n and n^m
def check( m, n):
     
    # m^n
    RHS = m * math.log(n);
     
    # n^m
    LHS = n * math.log(m);
     
    if (LHS > RHS):
        print("m^n > n^m");
         
    elif (LHS < RHS):
        print("m^n < n^m");
         
    else:
        print("m^n = n^m");
 
# Driver Code
m = 987654321;
n = 123456987;
 
# function call to
# compare m^n and n^m
check(m, n);
 
# This code is contributed by mits


C#




// C# program to compare which 
// is greater m^n or n^m
using System;
 
class GFG
{
// function to compare
// m^n and n^m
static void check(ulong m, ulong n)
{
    // m^n
    double RHS = m * (double)Math.Log(n);
     
    // n^m
    double LHS = n * (double)Math.Log(m);
     
    if (LHS > RHS)
        Console.Write("m^n > n^m");
         
    else if (LHS < RHS)
    Console.Write("m^n < n^m");
         
    else
        Console.Write("m^n = n^m");
}
 
// Driver Code
static public void Main ()
{
    ulong m = 987654321, n = 123456987;
 
    // function call to
    // compare m^n and n^m
    check(m, n);
 
}
}
 
// This code is contributed by anuj_67.


PHP




<?php
// PHP program to compare 
// which is greater m^n or n^m
 
// function to compare
// m^n and n^m
function check( $m, $n)
{
    // m^n
    $RHS = $m * log($n);
     
    // n^m
    $LHS = $n * log($m);
     
    if ( $LHS > $RHS )
        echo "m^n > n^m";
         
    else if ( $LHS < $RHS )
    echo "m^n < n^m";
         
    else
        echo "m^n = n^m";
}
 
// Driver Code
$m = 987654321;
$n = 123456987;
 
// function call to
// compare m^n and n^m
check($m, $n);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
 
// javascript program to compare which
// is greater m^n or n^m
 
// function to compare
// m^n and n^m
 
function check( m,  n)
{
    // m^n
    var RHS = m * Math.log(n);
       
    // n^m
    var LHS = n * Math.log(m);
       
    if (LHS > RHS){
        document.write("m^n > n^m");
    }
    else if (LHS < RHS) {
    document.write("m^n < n^m");
    }
           
    else {
        document.write("m^n = n^m");
    }
}
   
// Driver Code
 
     var m = 987654321 ; 
     var n = 123456987;
   
    // function call to
    // compare m^n and n^m
    check(m, n);
     
</script>


Output

m^n < n^m

Time Complexity: O(max(log(m), log(n)))
Auxiliary Space: O(max(log(m), log(n))), due to the recursion call stack.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments