Monday, January 6, 2025
Google search engine
HomeData Modelling & AIProgram to calculate value of nCr using Recursion

Program to calculate value of nCr using Recursion

Given two numbers N and r, find the value of NCr using recursion

Examples:

Input: N = 5, r = 2
Output: 10
Explanation: The value of 5C2 is 10

Input: N = 3, r = 1
Output: 3

 

Approach 1: One very interesting way to find the C(n,r) is the recursive method which is based on the recursive equation.

C(n,r) = C(n-1,r-1) + C(n-1,r)

Below is the implementation of the above approach as follows:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the value of nCr
// using recursion
 
int comb(int n,int r){
   if(n<r){
       return 0;
   }
   if(r == 0){
       return 1;
   }
   if(r == 1){
       return n;
   }
   if(n == 1){
       return 1;
   }
   return comb(n-1,r-1)+comb(n-1,r);
}
 
// Driver code
int main(){
   int n = 10,r = 5;
   cout << comb(n,r);
}


Java




// Java code for the above approach
import java.io.*;
class GFG {
 
  // Function to calculate the value of nCr
  // using recursion
  static int comb(int n, int r)
  {
     if(n<r){
       return 0;
     }
     if(r == 0){
         return 1;
     }
     if(r == 1){
         return n;
     }
     if(n == 1){
         return 1;
     }
     return comb(n-1,r-1)+comb(n-1,r);
  }
 
  public static void main(String[] args)
  {
    int n = 5, r = 3;
 
    System.out.println(comb(n, r));
  }
}


Python3




# Python code to implement above approach
 
# Function to calculate the value of nCr
# using recursion
 
def comb(n, r):
    if(n < r):
        return 0
    if(r == 0):
        return 1
    if(r == 1):
        return n
    if(n == 1):
        return 1
    return comb(n - 1, r - 1) + comb(n - 1, r)
     
#  Driver code
n = 10
r = 5
print(comb(n, r))
 
# This code is contributed by Pushpesh Raj.


C#




using System;
 
public class GFG{
 
  // Function to calculate the value of nCr
  // using recursion
  static int comb(int n, int r)
  {
    if(n<r){
       return 0;
    }
    if(r == 0){
       return 1;
    }
    if(r == 1){
       return n;
    }
    if(n == 1){
       return 1;
    }
    return comb(n-1,r-1)+comb(n-1,r);
  }
 
  // Driver code
  static public void Main (){
 
    int n = 5, r = 3;
    Console.WriteLine(comb(n, r));
  }
}


Javascript




<script>
//Javascript code to implement above approach
 
// Function to calculate the value of nCr
// using recursion
 
function comb(n, r){
   if( n<r ){
       return 0;
   }
   if(r == 0){
       return 1;
   }
   if(r == 1){
       return n;
   }
   if(n == 1){
       return 1;
   }
   return comb(n-1,r-1) + comb(n-1,r);
}
 
// Driver code
 
let n = 5, r = 3;
document.write(comb(n,r));
  
// </script>


Output

252

Time Complexity: O(2^n), Auxiliary Space: O(n)

Approach 2: Another idea is simply based on the below formula.

NCr = N! / (r! * (N-r)!)
Also, 
NCr-1 = N! / ( (r-1)! * (N – (r-1))! )

Hence,

  • NCr * r! * (N – r)! = NCr-1  * (r-1)! * (N – (r-1))!
  • NCr * r * (N-r)! = NCr-1  * (N-r+1)!                          [eliminating (r – 1)! from both side]
  • NCr * r = nCr-1  * (N-r+1)

Therefore,

NCr = NCr-1 * (N-r+1) / r

Below is the implementation of the above approach:

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the value of nCr
// using recursion
int nCr(int N, int r)
{
    int res = 0;
    if (r == 0) {
        return 1;
    }
    else {
        res = nCr(N, r - 1)
              * (N - r + 1) / r;
    }
    return res;
}
 
// Driver code
int main()
{
    int N = 5, r = 3;
    cout << nCr(N, r);
    return 0;
}


Java




// Java code for the above approach
import java.io.*;
class GFG {
 
  // Function to calculate the value of nCr
  // using recursion
  static int nCr(int N, int r)
  {
    int res = 0;
    if (r == 0) {
      return 1;
    }
    else {
      res = nCr(N, r - 1) * (N - r + 1) / r;
    }
    return res;
  }
 
  public static void main(String[] args)
  {
    int N = 5, r = 3;
 
    System.out.println(nCr(N, r));
  }
}
 
// This code is contributed by Potta Lokesh


Python3




# Python code to implement above approach
 
# Function to calculate the value Of nCr
# using recursion
def nCr(N, r):
    res = 0
    if(r == 0):
        return 1
    else:
        res = nCr(N, r-1)
* (N-r + 1) / r
    return res
 
 
# Driver code
if __name__ == "__main__":
    N = 5
    r = 3
    print(int(nCr(N, r)))


C#




using System;
 
public class GFG{
 
  // Function to calculate the value of nCr
  // using recursion
  static int nCr(int N, int r)
  {
    int res = 0;
    if (r == 0) {
      return 1;
    }
    else {
      res = nCr(N, r - 1)
        * (N - r + 1) / r;
    }
    return res;
  }
 
  // Driver code
  static public void Main (){
 
    int N = 5, r = 3;
    Console.WriteLine(nCr(N, r));
  }
}
 
// This code is contributed by hrithikgarg03188.


Javascript




<script>
//Javascript code to implement above approach
 
// Function to calculate the value of nCr
// using recursion
function nCr(N, r)
{
    let res = 0;
    if (r == 0) {
        return 1;
    }
    else {
        res = nCr(N, r - 1)
              * (N - r + 1) / r;
    }
    return res;
}
 
// Driver code
 
let N = 5, r = 3;
document.write(nCr(N,r));
     
// This code is contributed by Taranpreet
// </script>


Output

10

Time Complexity: O(r), Auxiliary Space: O(r)

Complexity Analysis: 
The time complexity of the above approach is O(r). This is because the function makes a single recursive call for each value of r, and the time taken to calculate the value of nCr is constant.

The Auxiliary space complexity of the above approach is O(r), as the recursive function calls create a new stack frame for each call. This means that the program will consume a significant amount of memory for larger values of r.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments