Saturday, January 18, 2025
Google search engine
HomeData Modelling & AIProgram to calculate the profit sharing ratio

Program to calculate the profit sharing ratio

Given an array of amounts and time_period that represents the amount of money N persons invest and the time period for which they had invested. The task is to calculate the Profit ratio at the End.
Examples: 
 

Input: n = 2, 
Amount1 = 7000, Time1 = 12 months 
Amount2 = 6000, Time2 = 6 months 
Output: 7 : 3
Input: n = 3, 
Amount1 = 5000, Time1 = 6 months 
Amount2 = 6000, Time2 = 6 months 
Amount3 = 1000, Time3 = 12 months 
Output: 5 : 6: 2 
 

 

Formula: 
 

1st person share: (Amount of money invested by 1st) * (Time Period of 1st) 
2nd Person share: (Amount of money invested by 2nd) * (Time Period of 2nd) 
3rd Person share: (Amount of money invested by 3rd) * (Time Period of 3rd) and so on… 
Ratio: 1st person share: 2nd person share : 3rd Person Share

Below is the required implementation: 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Calculating GCD of an array.
int find_Gcd(int crr[], int n)
{
    int i;
    int result = crr[0];
    for (i = 1; i < n; i++)
        result = __gcd(crr[i], result);
 
    return result;
}
 
// Function to calculate the Share
void profitRatio(int amountArr[], int timeTrr[],
                 int n)
{
    int i, crr[n];
    for (i = 0; i < n; i++)
        crr[i] = amountArr[i] * timeTrr[i];
 
    int Share = find_Gcd(crr, n);
 
    for (i = 0; i < n - 1; i++)
        cout << crr[i] / Share << " : ";
    cout << crr[i] / Share;
}
 
// Driver Code
int main()
{
    int amountArr[] = { 5000, 6000, 1000 };
    int timeTrr[] = { 6, 6, 12 };
 
    int n = sizeof(amountArr) / sizeof(amountArr[0]);
 
    profitRatio(amountArr, timeTrr, n);
 
    return 0;
}


Java




// Java implementation of
// above approach
import java.io.*;
 
class GFG
{
 
// Recursive function to
// return gcd of a and b
static int __gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
    return 0;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
    return __gcd(a, b - a);
}
 
// Calculating GCD of an array.
static int find_Gcd(int crr[], int n)
{
    int i;
    int result = crr[0];
    for (i = 1; i < n; i++)
        result = __gcd(crr[i], result);
 
    return result;
}
 
// Function to calculate the Share
static void profitRatio(int amountArr[],
                        int timeTrr[],
                        int n)
{
    int i;
    int crr[] = new int[n] ;
    for (i = 0; i < n; i++)
        crr[i] = amountArr[i] *
                 timeTrr[i];
 
    int Share = find_Gcd(crr, n);
 
    for (i = 0; i < n - 1; i++)
    System.out.print(crr[i] / Share + " : ");
    System.out.print(crr[i] / Share);
}
 
// Driver Code
public static void main (String[] args)
{
    int amountArr[] = {5000, 6000, 1000};
    int timeTrr[] = {6, 6, 12};
     
    int n = amountArr.length;
     
    profitRatio(amountArr, timeTrr, n);
}
}
 
// This code is contributed
// by inder_verma.


Python3




# Python3 implementation of above approach
 
# Recursive function to
# return gcd of a and b
def __gcd(a, b):
     
    # Everything divides 0
    if(a == 0 or b == 0):
        return 0;
     
    # base case
    if(a == b):
        return a;
     
    # a is greater
    if(a > b):
        return __gcd(a - b, b);
    return __gcd(a, b - a);
 
# Calculating GCD of an array.
def find_Gcd(crr, n):
    result = crr[0];
    for i in range(1, n):
        result = __gcd(crr[i], result);
    return result;
 
# Function to calculate the Share
def profitRatio(amountArr, timeTrr, n):
    i = 0;
    crr = [0] * n;
    for i in range(n):
        crr[i] = amountArr[i] * timeTrr[i];
     
    Share = find_Gcd(crr, n);
     
    for i in range(n - 1):
        print(int(crr[i] / Share),
                     end = " : ");
    print(int(crr[i + 1] / Share));
 
# Driver Code
amountArr = [5000, 6000, 1000];
timeTrr = [6, 6, 12];
 
n = len(amountArr);
 
profitRatio(amountArr, timeTrr, n);
 
# This code is contributed
# by mits


C#




// C# implementation of
// above approach
using System;
 
class GFG
{
 
// Recursive function to
// return gcd of a and b
static int __gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
    return 0;
     
    // base case
    if (a == b)
        return a;
     
    // a is greater
    if (a > b)
        return __gcd(a - b, b);
    return __gcd(a, b - a);
}
 
// Calculating GCD of an array.
static int find_Gcd(int []crr, int n)
{
    int i;
    int result = crr[0];
    for (i = 1; i < n; i++)
        result = __gcd(crr[i], result);
 
    return result;
}
 
// Function to calculate the Share
static void profitRatio(int []amountArr,
                        int []timeTrr,
                        int n)
{
    int i;
    int []crr = new int[n] ;
    for (i = 0; i < n; i++)
        crr[i] = amountArr[i] *
                timeTrr[i];
 
    int Share = find_Gcd(crr, n);
 
    for (i = 0; i < n - 1; i++)
    Console.Write(crr[i] / Share + " : ");
    Console.Write(crr[i] / Share);
}
 
// Driver Code
public static void Main ()
{
    int []amountArr = {5000, 6000, 1000};
    int []timeTrr = {6, 6, 12};
     
    int n = amountArr.Length;
     
    profitRatio(amountArr, timeTrr, n);
}
}
 
// This code is contributed
// by inder_verma.


PHP




<?php
// PHP implementation of
// above approach
 
// Recursive function to
// return gcd of a and b
function __gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 or $b == 0)
    return 0;
     
    // base case
    if ($a == $b)
        return $a;
     
    // a is greater
    if ($a > $b)
        return __gcd($a - $b, $b);
    return __gcd($a, $b - $a);
}
 
// Calculating GCD of an array.
function find_Gcd($crr, $n)
{
    $i;
    $result = $crr[0];
    for ($i = 1; $i < $n; $i++)
        $result = __gcd($crr[$i],
                        $result);
 
    return $result;
}
 
// Function to calculate the Share
function profitRatio($amountArr,
                     $timeTrr, $n)
{
    $i;
    $crr = array();
    for ($i = 0; $i < $n; $i++)
        $crr[$i] = $amountArr[$i] *
                   $timeTrr[$i];
 
    $Share = find_Gcd($crr, $n);
 
    for ($i = 0; $i < $n - 1; $i++)
        echo $crr[$i] / $Share , " : ";
    echo $crr[$i] / $Share;
}
 
// Driver Code
$amountArr = array(5000, 6000, 1000);
$timeTrr = array(6, 6, 12);
 
$n = count($amountArr);
 
profitRatio($amountArr, $timeTrr, $n);
 
// This code is contributed
// by inder_verma
?>


Javascript




<script>
// javascript implementation of
// above approach
 
    // Recursive function to
    // return gcd of a and b
    function __gcd(a , b) {
        // Everything divides 0
        if (a == 0 || b == 0)
            return 0;
 
        // base case
        if (a == b)
            return a;
 
        // a is greater
        if (a > b)
            return __gcd(a - b, b);
        return __gcd(a, b - a);
    }
 
    // Calculating GCD of an array.
    function find_Gcd(crr , n) {
        var i;
        var result = crr[0];
        for (i = 1; i < n; i++)
            result = __gcd(crr[i], result);
 
        return result;
    }
 
    // Function to calculate the Share
    function profitRatio(amountArr , timeTrr , n) {
        var i;
        var crr = Array(n).fill(0);
        for (i = 0; i < n; i++)
            crr[i] = amountArr[i] * timeTrr[i];
 
        var Share = find_Gcd(crr, n);
 
        for (i = 0; i < n - 1; i++)
            document.write(crr[i] / Share + " : ");
        document.write(crr[i] / Share);
    }
 
    // Driver Code
     
        var amountArr = [ 5000, 6000, 1000 ];
        var timeTrr = [ 6, 6, 12 ];
 
        var n = amountArr.length;
 
        profitRatio(amountArr, timeTrr, n);
 
// This code contributed by aashish1995
 
</script>


Output: 

5 : 6 : 2

 

Time Complexity: O(nlogm) where m is the max value of the array crr.
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments