Friday, January 10, 2025
Google search engine
HomeData Modelling & AIProgram to calculate sum of an Infinite Arithmetic-Geometric Sequence

Program to calculate sum of an Infinite Arithmetic-Geometric Sequence

Given three integers A, D, and R representing the first term, common difference, and common ratio of an infinite Arithmetic-Geometric Progression, the task is to find the sum of the given infinite Arithmetic-Geometric Progression such that the absolute value of R is always less than 1.

Examples:

Input: A = 0, D = 1, R = 0.5
Output: 0.666667

Input: A = 2, D = 3, R = -0.3
Output: 0.549451

Approach: An arithmetic-geometric sequence is the result of the term-by-term multiplication of the geometric progression series with the corresponding terms of an arithmetic progression series. The series is given by:

a, (a + d) * r, (a + 2 * d) * r2, (a + 3 * d) * r3, …, [a + (N ? 1) * d] * r(N ? 1).

The Nth term of the Arithmetic-Geometric Progression is given by:

=> T_N = [a + (N - 1) * d] * (b * r^{n - 1})

The sum of the Arithmetic-Geometric Progression is given by:

=>S_? = \frac{a}{(1 - r)} + \frac{d * r}{(1 - r)^2}

where, |r| < 1.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of the
// infinite AGP
void sumOfInfiniteAGP(double a, double d,
                      double r)
{
    // Stores the sum of infinite AGP
    double ans = a / (1 - r)
                 + (d * r) / pow((1-r),2);
 
    // Print the required sum
    cout << ans;
}
 
// Driver Code
int main()
{
    double a = 0, d = 1, r = 0.5;
    sumOfInfiniteAGP(a, d, r);
 
    return 0;
}
// Correction done by Yogesh0903


Java




import java.lang.Math;
// Java program for the above approach
class GFG{
 
// Function to find the sum of the
// infinite AGP
static void sumOfInfiniteAGP(double a, double d,
                             double r)
{
     
    // Stores the sum of infinite AGP
    double ans = a / (1 - r) +
           (d * r) / Math.pow((1-r),2);
 
    // Print the required sum
    System.out.print(ans);
}
 
// Driver Code
public static void main(String[] args)
{
    double a = 0, d = 1, r = 0.5;
     
    sumOfInfiniteAGP(a, d, r);
}
}
 
// This code is contributed by 29AjayKumar
// Correction done by Yogesh0903


Python3




# Python3 program for the above approach
 
# Function to find the sum of the
# infinite AGP
def sumOfInfiniteAGP(a, d, r):
   
    # Stores the sum of infinite AGP
    ans = a / (1 - r) + (d * r) / (1 - r)**2;
 
    # Print the required sum
    print (round(ans,6))
 
# Driver Code
if __name__ == '__main__':
    a, d, r = 0, 1, 0.5
    sumOfInfiniteAGP(a, d, r)
 
# This code is contributed by mohit kumar 29.
# Correction done by Yogesh0903


C#




// C# program for the above approach
using System;
class GFG
{
   
    // Function to find the sum of the
    // infinite AGP
    static void sumOfInfiniteAGP(double a, double d,
                                 double r)
    {
       
        // Stores the sum of infinite AGP
        double ans = a / (1 - r) + (d * r) / Math.Pow((1-r),2);
 
        // Print the required sum
        Console.Write(ans);
    }
 
    // Driver Code
    public static void Main()
    {
        double a = 0, d = 1, r = 0.5;
        sumOfInfiniteAGP(a, d, r);
    }
}
 
// This code is contributed by ukasp.
// Correction done by Yogesh0903


Javascript




<script>
        // Javascript program for the above approach
 
        // Function to find the sum of the
        // infinite AGP
        function sumOfInfiniteAGP(a, d, r) {
 
            // Stores the sum of infinite AGP
            let ans = a / (1 - r) +
                (d * r) / Math.pow((1-r),2);
 
            // Print the required sum
            document.write(ans)
        }
 
        // Driver Code
 
        let a = 0, d = 1, r = 0.5;
 
        sumOfInfiniteAGP(a, d, r);
 
        // This code is contributed by Hritik
    </script>


Output

0.666667

Time Complexity: O(1)
Auxiliary Space: O(1),  since no extra space has been taken.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments