Saturday, December 28, 2024
Google search engine
HomeData Modelling & AIProgram to calculate Percentile of a student based on rank

Program to calculate Percentile of a student based on rank

Given the rank of a student and the total number of students appearing in an examination, the task is to find the percentile of the student. 
 

The percentile of a student is the % of the number of students having marks less than him/her.

Examples: 
 

Input: Rank: 805, Total Number of Students Appeared: 97481 
Output: 99.17 
Explanation: 
((97481 – 805) / 97481) * 100 = 99.17
Input: Rank: 65, Total Number of Students Appeared: 100 
Output: 35 
Explanation: 
((100 – 65) / 100) * 100 = 35 
 

 

Approach 
The formula to calculate the percentile when the rank of the student and the total number of students appeared is given is:
 

((Total Students – Rank) / Total Students) * 100

Below is the implementation of the above formula: 
 

C++ 

 

 

C++




// C++ program to calculate Percentile
// of a student based on rank
 
#include <bits/stdc++.h>
using namespace std;
 
// Program to calculate the percentile
float getPercentile(int rank, int students)
{
    // flat variable to store the result
    float result = float(students - rank)
                / students * 100;
 
    // calculate and return the percentile
    return result;
}
 
// Driver Code
int main()
{
    int your_rank = 805;
    int total_students = 97481;
 
    cout << getPercentile(
        your_rank, total_students);
}


Java




// Java program to calculate Percentile
// of a student based on rank
import java.util.*;
 
class GFG{
  
// Program to calculate the percentile
static float getPercentile(int rank, int students)
{
    // flat variable to store the result
    float result = (float)(students - rank)
                   / students * 100;
  
    // calculate and return the percentile
    return result;
}
  
// Driver Code
public static void main(String[] args)
{
    int your_rank = 805;
    int total_students = 97481;
  
    System.out.print(getPercentile(
        your_rank, total_students));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to calculate Percentile
# of a student based on rank
 
# Program to calculate the percentile
def getPercentile(rank, students) :
 
    # flat variable to store the result
    result = (students - rank) / students * 100;
 
    # calculate and return the percentile
    return result;
 
# Driver Code
if __name__ == "__main__" :
 
    your_rank = 805;
    total_students = 97481;
 
    print(getPercentile(your_rank, total_students));
 
# This code is contributed by Yash_R


C#




// C# program to calculate Percentile
// of a student based on rank
using System;
 
class GFG{
   
// Program to calculate the percentile
static float getPercentile(int rank, int students)
{
    // flat variable to store the result
    float result = (float)(students - rank)
                   / students * 100;
   
    // calculate and return the percentile
    return result;
}
   
// Driver Code
public static void Main(String[] args)
{
    int your_rank = 805;
    int total_students = 97481;
   
    Console.Write(getPercentile(
        your_rank, total_students));
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript program to calculate Percentile
// of a student based on rank
 
    // Program to calculate the percentile
    function getPercentile(rank , students)
    {
        // flat variable to store the result
        var result =  (students - rank) / students * 100;
 
        // calculate and return the percentile
        return result;
    }
 
    // Driver Code
     
        var your_rank = 805;
        var total_students = 97481;
 
        document.write(getPercentile(your_rank, total_students).toFixed(4));
 
// This code contributed by aashish1995
 
</script>


Output: 

99.1742

 

Performance Analysis
 

  • Time Complexity: In the above approach, we are able to calculate percentile using a formula in constant time, so the time complexity is O(1)
     
  • Auxiliary Space Complexity: In the above approach, we are not using any extra space apart from a few constant size variables, so Auxiliary space complexity is O(1).

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments