Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIProgram to add two polynomials

Program to add two polynomials

Given two polynomials represented by two arrays, write a function that adds given two polynomials. 

Example: 

Input:  A[] = {5, 0, 10, 6} 
        B[] = {1, 2, 4} 
Output: sum[] = {6, 2, 14, 6}

The first input array represents "5 + 0x^1 + 10x^2 + 6x^3"
The second array represents "1 + 2x^1 + 4x^2" 
And Output is "6 + 2x^1 + 14x^2 + 6x^3"

We strongly recommend minimizing your browser and try this yourself first. 

Addition is simpler than multiplication of polynomials. We initialize the result as one of the two polynomials, then we traverse the other polynomial and add all terms to the result.

add(A[0..m-1], B[0..n01])
1) Create a sum array sum[] of size equal to maximum of 'm' and 'n'
2) Copy A[] to sum[].
3) Traverse array B[] and do following for every element B[i]
          sum[i] = sum[i] + B[i]
4) Return sum[].

The following is the implementation of the above algorithm. 

C++




// Simple C++ program to add two polynomials
#include <iostream>
using namespace std;
 
// A utility function to return maximum of two integers
int max(int m, int n) { return (m > n) ? m : n; }
 
// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
int* add(int A[], int B[], int m, int n)
{
    int size = max(m, n);
    int* sum = new int[size];
 
    // Initialize the product polynomial
    for (int i = 0; i < m; i++)
        sum[i] = A[i];
 
    // Take every term of first polynomial
    for (int i = 0; i < n; i++)
        sum[i] += B[i];
 
    return sum;
}
 
// A utility function to print a polynomial
void printPoly(int poly[], int n)
{
    for (int i = 0; i < n; i++) {
        cout << poly[i];
        if (i != 0)
            cout << "x^" << i;
        if (i != n - 1)
            cout << " + ";
    }
}
 
// Driver program to test above functions
int main()
{
    // The following array represents polynomial 5 + 10x^2 +
    // 6x^3
    int A[] = { 5, 0, 10, 6 };
 
    // The following array represents polynomial 1 + 2x +
    // 4x^2
    int B[] = { 1, 2, 4 };
    int m = sizeof(A) / sizeof(A[0]);
    int n = sizeof(B) / sizeof(B[0]);
 
    cout << "First polynomial is \n";
    printPoly(A, m);
    cout << "\nSecond polynomial is \n";
    printPoly(B, n);
 
    int* sum = add(A, B, m, n);
    int size = max(m, n);
 
    cout << "\nsum polynomial is \n";
    printPoly(sum, size);
 
    return 0;
}


Java




// Java program to add two polynomials
 
class GFG {
 
// A utility function to return maximum of two integers
    static int max(int m, int n) {
        return (m > n) ? m : n;
    }
 
// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
    static int[] add(int A[], int B[], int m, int n) {
        int size = max(m, n);
        int sum[] = new int[size];
 
// Initialize the product polynomial
        for (int i = 0; i < m; i++) {
            sum[i] = A[i];
        }
 
// Take ever term of first polynomial
        for (int i = 0; i < n; i++) {
            sum[i] += B[i];
        }
 
        return sum;
    }
 
// A utility function to print a polynomial
    static void printPoly(int poly[], int n) {
        for (int i = 0; i < n; i++) {
            System.out.print(poly[i]);
            if (i != 0) {
                System.out.print("x^" + i);
            }
            if (i != n - 1) {
                System.out.print(" + ");
            }
        }
    }
 
// Driver program to test above functions
    public static void main(String[] args) {
        // The following array represents polynomial 5 + 10x^2 + 6x^3
        int A[] = {5, 0, 10, 6};
 
        // The following array represents polynomial 1 + 2x + 4x^2
        int B[] = {1, 2, 4};
        int m = A.length;
        int n = B.length;
        System.out.println("First polynomial is");
        printPoly(A, m);
        System.out.println("\nSecond polynomial is");
        printPoly(B, n);
        int sum[] = add(A, B, m, n);
        int size = max(m, n);
        System.out.println("\nsum polynomial is");
        printPoly(sum, size);
 
    }
}


Python3




# Simple Python 3 program to add two
# polynomials
 
# A utility function to return maximum
# of two integers
 
# A[] represents coefficients of first polynomial
# B[] represents coefficients of second polynomial
# m and n are sizes of A[] and B[] respectively
def add(A, B, m, n):
 
    size = max(m, n);
    sum = [0 for i in range(size)]
 
    # Initialize the product polynomial
     
    for i in range(0, m, 1):
        sum[i] = A[i]
 
    # Take ever term of first polynomial
    for i in range(n):
        sum[i] += B[i]
 
    return sum
 
# A utility function to print a polynomial
def printPoly(poly, n):
    for i in range(n):
        print(poly[i], end = "")
        if (i != 0):
            print("x^", i, end = "")
        if (i != n - 1):
            print(" + ", end = "")
 
# Driver Code
if __name__ == '__main__':
     
    # The following array represents
    # polynomial 5 + 10x^2 + 6x^3
    A = [5, 0, 10, 6]
 
    # The following array represents
    # polynomial 1 + 2x + 4x^2
    B = [1, 2, 4]
    m = len(A)
    n = len(B)
 
    print("First polynomial is")
    printPoly(A, m)
    print("\n", end = "")
    print("Second polynomial is")
    printPoly(B, n)
    print("\n", end = "")
    sum = add(A, B, m, n)
    size = max(m, n)
 
    print("sum polynomial is")
    printPoly(sum, size)
     
# This code is contributed by
# Sahil_Shelangia


C#




// C# program to add two polynomials
using System;
class GFG {
 
    // A utility function to return maximum of two integers
    static int max(int m, int n)
    {
        return (m > n) ? m : n;
    }
 
    // A[] represents coefficients of first polynomial
    // B[] represents coefficients of second polynomial
    // m and n are sizes of A[] and B[] respectively
    static int[] add(int[] A, int[] B, int m, int n)
    {
        int size = max(m, n);
        int[] sum = new int[size];
 
        // Initialize the product polynomial
        for (int i = 0; i < m; i++)
        {
            sum[i] = A[i];
        }
 
        // Take ever term of first polynomial
        for (int i = 0; i < n; i++)
        {
            sum[i] += B[i];
        }
 
        return sum;
    }
 
    // A utility function to print a polynomial
    static void printPoly(int[] poly, int n) 
    {
        for (int i = 0; i < n; i++)
        {
            Console.Write(poly[i]);
            if (i != 0)
            {
                Console.Write("x^" + i);
            }
            if (i != n - 1)
            {
                Console.Write(" + ");
            }
        }
    }
 
    // Driver code
    public static void Main()
    {
        // The following array represents
        // polynomial 5 + 10x^2 + 6x^3
        int[] A = {5, 0, 10, 6};
 
        // The following array represents
        // polynomial 1 + 2x + 4x^2
        int[] B = {1, 2, 4};
        int m = A.Length;
        int n = B.Length;
        Console.WriteLine("First polynomial is");
        printPoly(A, m);
        Console.WriteLine("\nSecond polynomial is");
        printPoly(B, n);
        int[] sum = add(A, B, m, n);
        int size = max(m, n);
        Console.WriteLine("\nsum polynomial is");
        printPoly(sum, size);
 
    }
}
 
//This Code is Contributed
// by Mukul Singh


PHP




<?php
// Simple PHP program to add two polynomials
 
// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
function add($A, $B, $m, $n)
{
    $size = max($m, $n);
    $sum = array_fill(0, $size, 0);
     
    // Initialize the product polynomial
    for ($i = 0; $i < $m; $i++)
        $sum[$i] = $A[$i];
     
    // Take ever term of first polynomial
    for ($i = 0; $i < $n; $i++)
        $sum[$i] += $B[$i];
     
    return $sum;
}
 
// A utility function to print a polynomial
function printPoly($poly, $n)
{
    for ($i = 0; $i < $n; $i++)
    {
        echo $poly[$i];
        if ($i != 0)
            echo "x^" . $i;
        if ($i != $n - 1)
        echo " + ";
    }
}
 
// Driver Code
 
// The following array represents
// polynomial 5 + 10x^2 + 6x^3
$A = array(5, 0, 10, 6);
 
// The following array represents
// polynomial 1 + 2x + 4x^2
$B = array(1, 2, 4);
$m = count($A);
$n = count($B);
 
echo "First polynomial is \n";
printPoly($A, $m);
echo "\nSecond polynomial is \n";
printPoly($B, $n);
 
$sum = add($A, $B, $m, $n);
$size = max($m, $n);
 
echo "\nsum polynomial is \n";
printPoly($sum, $size);
 
// This code is contributed by chandan_jnu
?>


Javascript




<script>
 
// Simple JavaScript program to add two
// polynomials
// A utility function to return maximum
// of two integers
 
// A[] represents coefficients of first polynomial
// B[] represents coefficients of second polynomial
// m and n are sizes of A[] and B[] respectively
  function add(A, B, m, n){
      let size = Math.max(m, n);
      var sum = [];
      for (var i = 0; i < 10; i++) sum[i] = 0;
      // Initialize the product polynomial
      for(let i = 0;i<m;i++){
          sum[i] = A[i];
      }
 
      // Take ever term of first polynomial
      for (let i = 0;i<n;i++){
          sum[i] += B[i];
      }
      return sum;
  }
 
  // A utility function to print a polynomial
  function printPoly(poly, n){
      let ans = '';
      for(let i = 0;i<n;i++){
          ans += poly[i];
          if (i != 0){
              ans +="x^ ";
              ans +=i;
           }
          if (i != n - 1){
              ans += " + ";
          }
       }
       document.write(ans);
  }
  // Driver Code
   
  // The following array represents
  // polynomial 5 + 10x^2 + 6x^3
  let A = [5, 0, 10, 6];
  // The following array represents
  // polynomial 1 + 2x + 4x^2
  let B = [1, 2, 4];
  let m = A.length;
  let n = B.length;
 
  document.write("First polynomial is" + "</br>");
  printPoly(A, m);
  document.write("</br>");
  document.write("Second polynomial is"  + "</br>");
  printPoly(B, n);
  let sum = add(A, B, m, n);
  let size = Math.max(m, n);
  document.write("</br>");
  document.write("sum polynomial is" + "</br>");
  printPoly(sum, size);
   
</script>


Output: 

First polynomial is
5 + 0x^1 + 10x^2 + 6x^3
Second polynomial is
1 + 2x^1 + 4x^2
Sum polynomial is
6 + 2x^1 + 14x^2 + 6x^3

Time complexity: O(m+n) where m and n are orders of two given polynomials.

Auxiliary Space: O(max(m, n))

Polynomial addition using Linked List

C++




// Program to add two polynomials represented
// in linkedlist using recursion
#include <iostream>
using namespace std;
 
// Node class
class Node {
 
public:
    int coeff, power;
    Node* next;
 
    // Constructor of Node
    Node(int coeff, int power)
    {
        this->coeff = coeff;
        this->power = power;
        this->next = NULL;
    }
};
 
// Function to add polynomials
void addPolynomials(Node* head1, Node* head2)
{
 
    // Checking if our list is empty
    if (head1 == NULL && head2 == NULL)
        return;
 
    // List contains elmements
 
    else if (head1->power == head2->power) {
        cout << " " << head1->coeff + head2->coeff << "x^"
             << head1->power << " ";
        addPolynomials(head1->next, head2->next);
    }
    else if (head1->power > head2->power) {
        cout << " " << head1->coeff << "x^" << head1->power
             << " ";
        addPolynomials(head1->next, head2);
    }
    else {
        cout << " " << head2->coeff << "x^" << head2->power
             << " ";
        addPolynomials(head1, head2->next);
    }
}
 
void insert(Node* head, int coeff, int power)
{
    Node* new_node = new Node(coeff, power);
    while (head->next != NULL) {
        head = head->next;
    }
    head->next = new_node;
}
 
void printList(Node* head)
{
    cout << "Linked List" << endl;
    while (head != NULL) {
        cout << " " << head->coeff << "x"
             << "^" << head->power;
        head = head->next;
    }
}
 
// Main function
int main()
{
 
    Node* head = new Node(5, 2);
    insert(head, 4, 1);
    Node* head2 = new Node(6, 2);
 
    insert(head2, 4, 1);
    printList(head);
 
    cout << endl;
    printList(head2);
 
    cout << endl << "Addition:" << endl;
    addPolynomials(head, head2);
 
    return 0;
}


Java




// java code for the above approach
 
// Program to add two polynomials represented
// in linkedlist using recursion
import java.util.*;
 
// Node class
class Node {
 
  public int coeff, power;
  Node next;
 
  // Constructor of Node
  Node(int coeff, int power)
  {
    this.coeff = coeff;
    this.power = power;
    this.next = null;
  }
}
 
// Function to add polynomials
public class Main {
 
  public static void addPolynomials(Node head1, Node head2)
  {
 
    // Checking if our list is empty
    if (head1 == null && head2 == null)
      return;
 
    // List contains elements
 
    else if (head1.power == head2.power) {
      System.out.print(" " + (head1.coeff + head2.coeff) + "x^"
                       + head1.power + " ");
      addPolynomials(head1.next, head2.next);
    }
    else if (head1.power > head2.power) {
      System.out.print(" " + head1.coeff + "x^" + head1.power
                       + " ");
      addPolynomials(head1.next, head2);
    }
    else {
      System.out.print(" " + head2.coeff + "x^" + head2.power
                       + " ");
      addPolynomials(head1, head2.next);
    }
  }
 
  public static void insert(Node head, int coeff, int power)
  {
    Node new_node = new Node(coeff, power);
    while (head.next != null) {
      head = head.next;
    }
    head.next = new_node;
  }
 
  public static void printList(Node head)
  {
    System.out.println("Linked List");
    while (head != null) {
      System.out.print(" " + head.coeff + "x"
                       + "^" + head.power);
      head = head.next;
    }
  }
 
  // Main function
  public static void main(String[] args)
  {
 
    Node head = new Node(5, 2);
    insert(head, 4, 1);
    Node head2 = new Node(6, 2);
 
    insert(head2, 4, 1);
    printList(head);
 
    System.out.println();
    printList(head2);
 
    System.out.println("\nAddition:");
    addPolynomials(head, head2);
 
  }
}
 
// This code is contributed by Prince Kumar


Python3




# Program to add two polynomials represented
# in linkedlist using recursion
class Node:
    def __init__(self, coeff, power):
        self.coeff = coeff
        self.power = power
        self.next = None
         
# Function to add polynomials
def add_polynomials(head1, head2):
    if not head1 and not head2:
        return
    elif head1.power == head2.power:
        print(f' {head1.coeff + head2.coeff}x^{head1.power}', end='')
        add_polynomials(head1.next, head2.next)
    elif head1.power > head2.power:
        print(f' {head1.coeff}x^{head1.power}', end='')
        add_polynomials(head1.next, head2)
    else:
        print(f' {head2.coeff}x^{head2.power}', end='')
        add_polynomials(head1, head2.next)
 
def insert(head, coeff, power):
    new_node = Node(coeff, power)
    while head.next:
        head = head.next
    head.next = new_node
 
def print_list(head):
    print('Linked List')
    while head:
        print(f' {head.coeff}x^{head.power}', end='')
        head = head.next
 
if __name__ == '__main__':
    head = Node(5, 2)
    insert(head, 4, 1)
    head2 = Node(6, 2)
    insert(head2, 4, 1)
    print_list(head)
    print()
    print_list(head2)
    print('\nAddition:')
    add_polynomials(head, head2)


C#




using System;
 
class Node
{
    public int coeff, power;
    public Node next;
 
    // Constructor of Node
    public Node(int coeff, int power)
    {
        this.coeff = coeff;
        this.power = power;
        this.next = null;
    }
}
 
class Polynomial
{
    public static void AddPolynomials(Node head1, Node head2)
    {
        // Checking if our list is empty
        if (head1 == null && head2 == null)
            return;
 
        // List contains elements
        else if (head1.power == head2.power)
        {
            Console.Write(" " + (head1.coeff + head2.coeff) + "x^" + head1.power);
            AddPolynomials(head1.next, head2.next);
        }
        else if (head1.power > head2.power)
        {
            Console.Write(" " + head1.coeff + "x^" + head1.power);
            AddPolynomials(head1.next, head2);
        }
        else
        {
            Console.Write(" " + head2.coeff + "x^" + head2.power);
            AddPolynomials(head1, head2.next);
        }
    }
 
    public static void Insert(Node head, int coeff, int power)
    {
        Node new_node = new Node(coeff, power);
        while (head.next != null)
        {
            head = head.next;
        }
        head.next = new_node;
    }
 
    public static void PrintList(Node head)
    {
        Console.WriteLine("Linked List");
        while (head != null)
        {
            Console.Write(" " + head.coeff + "x^" + head.power);
            head = head.next;
        }
    }
 
    public static void Main()
    {
        Node head = new Node(5, 2);
        Insert(head, 4, 1);
        Node head2 = new Node(6, 2);
 
        Insert(head2, 4, 1);
        PrintList(head);
 
        Console.WriteLine();
        PrintList(head2);
 
        Console.WriteLine("\nAddition:");
        AddPolynomials(head, head2);
 
        Console.ReadLine();
    }
}


Javascript




// Program to add two polynomials represented
// in linkedlist using recursion
 
// Node class
class Node {
  constructor(coeff, power) {
    this.coeff = coeff;
    this.power = power;
    this.next = null;
  }
}
 
// Function to add polynomials
function addPolynomials(head1, head2) {
  // Checking if our list is empty
  if (head1 === null && head2 === null) {
    return;
  }
 
  // List contains elmements
  else if (head1.power === head2.power) {
    console.log(` ${head1.coeff + head2.coeff}x^${head1.power} `);
    addPolynomials(head1.next, head2.next);
  } else if (head1.power > head2.power) {
    console.log(` ${head1.coeff}x^${head1.power} `);
    addPolynomials(head1.next, head2);
  } else {
    console.log(` ${head2.coeff}x^${head2.power} `);
    addPolynomials(head1, head2.next);
  }
}
 
function insert(head, coeff, power) {
  const new_node = new Node(coeff, power);
  while (head.next !== null) {
    head = head.next;
  }
  head.next = new_node;
}
 
function printList(head) {
  console.log("Linked List");
  while (head !== null) {
    console.log(` ${head.coeff}x^${head.power}`);
    head = head.next;
  }
}
 
// Main function
const head = new Node(5, 2);
insert(head, 4, 1);
const head2 = new Node(6, 2);
 
insert(head2, 4, 1);
printList(head);
 
console.log();
printList(head2);
 
console.log("\nAddition:\n");
addPolynomials(head, head2);


Output

Linked List
 5x^2 4x^1
Linked List
 6x^2 4x^1
Addition:
 11x^2  8x^1 

Time Complexity: O(m + n) where m and n are number of nodes in first and second lists respectively.
Auxiliary Space: O(m + n) where m and n are number of nodes in first and second lists respectively due to recursion.

This article is contributed by Harsh. Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.

 Implementation of a function that adds two polynomials represented as lists:

Approach

This implementation takes two arguments p1 and p2, which are lists representing the coefficients of two polynomials. The function returns a new list representing the sum of the two input polynomials.

The function first checks the lengths of the two input lists and pads the shorter list with zeros so that both lists have the same length. We then use the zip function to create pairs of corresponding coefficients from the two input lists, and the sum function to add the pairs together. The resulting sum is appended to a new list, which is returned at the end.

C++




#include <iostream>
#include <vector>
 
std::vector<int> add_polynomials(std::vector<int> p1, std::vector<int> p2) {
    int len1 = p1.size();
    int len2 = p2.size();
     
    if (len1 < len2) {
        p1.resize(len2, 0);
    } else {
        p2.resize(len1, 0);
    }
     
    std::vector<int> result(len1);
    for (int i = 0; i < len1; i++) {
        result[i] = p1[i] + p2[i];
    }
     
    return result;
}
 
int main() {
    std::vector<int> p1 = {2, 0, 4, 6, 8};
    std::vector<int> p2 = {0, 0, 1, 2};
     
    std::vector<int> result = add_polynomials(p1, p2);
    for (int i = 0; i < result.size(); i++) {
        std::cout << result[i] << " ";
    }
     
    return 0;
}


Python3




def add_polynomials(p1, p2):
    len1, len2 = len(p1), len(p2)
    if len1 < len2:
        p1 += [0] * (len2 - len1)
    else:
        p2 += [0] * (len1 - len2)
    return [sum(x) for x in zip(p1, p2)]
 
p1 = [2, 0, 4, 6, 8]
p2 = [0, 0, 1, 2]
print(add_polynomials(p1, p2))


Java




import java.util.*;
 
public class PolynomialAddition {
    public static List<Integer> addPolynomials(List<Integer> p1, List<Integer> p2) {
        int len1 = p1.size();
        int len2 = p2.size();
         
        if (len1 < len2) {
            for (int i = 0; i < len2 - len1; i++) {
                p1.add(0);
            }
        } else {
            for (int i = 0; i < len1 - len2; i++) {
                p2.add(0);
            }
        }
         
        List<Integer> result = new ArrayList<Integer>(len1);
        for (int i = 0; i < len1; i++) {
            result.add(p1.get(i) + p2.get(i));
        }
         
        return result;
    }
     
    public static void main(String[] args) {
        List<Integer> p1 = new ArrayList<Integer>(Arrays.asList(2, 0, 4, 6, 8));
        List<Integer> p2 = new ArrayList<Integer>(Arrays.asList(0, 0, 1, 2));
         
        List<Integer> result = addPolynomials(p1, p2);
        for (int i = 0; i < result.size(); i++) {
            System.out.print(result.get(i) + " ");
        }
    }
}


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program {
    static List<int> AddPolynomials(List<int> p1, List<int> p2) {
        int len1 = p1.Count;
        int len2 = p2.Count;
         
        if (len1 < len2) {
            p1.AddRange(Enumerable.Repeat(0, len2 - len1));
        } else {
            p2.AddRange(Enumerable.Repeat(0, len1 - len2));
        }
         
        List<int> result = new List<int>(len1);
        for (int i = 0; i < len1; i++) {
            result.Add(p1[i] + p2[i]);
        }
         
        return result;
    }
 
    static void Main(string[] args) {
        List<int> p1 = new List<int> { 2, 0, 4, 6, 8 };
        List<int> p2 = new List<int> { 0, 0, 1, 2 };
         
        List<int> result = AddPolynomials(p1, p2);
        foreach (int coeff in result) {
            Console.Write(coeff + " ");
        }
    }
}


Javascript




function addPolynomials(p1, p2) {
  let len1 = p1.length;
  let len2 = p2.length;
   
  if (len1 < len2) {
    p1 = p1.concat(new Array(len2 - len1).fill(0));
  } else {
    p2 = p2.concat(new Array(len1 - len2).fill(0));
  }
   
  let result = new Array(len1);
  for (let i = 0; i < len1; i++) {
    result[i] = p1[i] + p2[i];
  }
   
  return result;
}
 
let p1 = [2, 0, 4, 6, 8];
let p2 = [0, 0, 1, 2];
 
let result = addPolynomials(p1, p2);
console.log(result.join(" "));


Output

[2, 0, 5, 8, 8]

time complexity: O(n), where n is the max of length of two polynomials

 space complexity: O(n). where n is the max of length of two polynomials

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments