Given two numbers x and N, the task is to find the value of cosh(x) from the series upto N terms.
The expansion of cosh(x) is given below:
cosh(x) = 1 + x2/2! + x4/4! + …………
Examples:
Input: x = 1, N = 5 Output: 1.54308035714 Input: x = 1, N = 10 Output: 1.54308063497
Approach:
The above series can be easily implemented using a factorial function and loops.
The nth term of the series is:
Below is the implementation of the above approach:
C++
// C++ program for // the sum of cosh(x) series #include <bits/stdc++.h> using namespace std; // function to return the factorial of a number int fact( int n) { int i = 1, fac = 1; for (i = 1; i <= n; i++) fac = fac * i; return fac; } // function to return the sum of the series double log_Expansion( double x, int n) { double sum = 0; int i = 0; for (i = 0; i < n; i++) { sum = sum + pow (x, 2 * i) / fact(2 * i); } return sum; } // Driver code int main() { double x = 1; int n = 10; cout << setprecision(12) << log_Expansion(x, n) << endl; return 0; } |
Java
// Java program for the sum of // cosh(x) series import java.util.*; class GFG { // function to return the factorial of a number static int fact( int n) { int i = 1 , fac = 1 ; for (i = 1 ; i <= n; i++) fac = fac * i; return fac; } // function to return the sum of the series static double log_Expansion( double x, int n) { double sum = 0 ; int i = 0 ; for (i = 0 ; i < n; i++) { sum = sum + Math.pow(x, 2 * i) / fact( 2 * i); } return sum; } // Driver code public static void main(String[] args) { double x = 1 ; int n = 10 ; System.out.println(log_Expansion(x, n)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for the Sum of cosh(x) series # function to return the factorial of a number def fact(n): i, fac = 1 , 1 for i in range ( 1 , n + 1 ): fac = fac * i return fac # function to return the Sum of the series def log_Expansion(x, n): Sum = 0 i = 0 for i in range (n): Sum = Sum + pow (x, 2 * i) / fact( 2 * i) return Sum # Driver code x = 1 n = 10 print (log_Expansion(x, n)) # This code is contributed by Mohit Kumar |
C#
// C# program for the sum of // cosh(x) series using System; class GFG { // function to return the // factorial of a number static int fact( int n) { int i = 1, fac = 1; for (i = 1; i <= n; i++) fac = fac * i; return fac; } // function to return the sum of the series static double log_Expansion( double x, int n) { double sum = 0; int i = 0; for (i = 0; i < n; i++) { sum = sum + Math.Pow(x, 2 * i) / fact(2 * i); } return sum; } // Driver code public static void Main(String[] args) { double x = 1; int n = 10; Console.WriteLine(log_Expansion(x, n)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program for the sum of // cosh(x) series // function to return the factorial of a number function fact( n) { let i = 1, fac = 1; for (i = 1; i <= n; i++) fac = fac * i; return fac; } // function to return the sum of the series function log_Expansion( x , n) { let sum = 0; let i = 0; for (i = 0; i < n; i++) { sum = sum + Math.pow(x, 2 * i) / fact(2*i); } return sum; } // Driver code let x = 1; let n = 10; document.write(log_Expansion(x, n).toFixed(11)); // This code is contributed by shikhasingrajput </script> |
1.54308063497
Time Complexity: O(n2), where n represents the value of the given integer.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!