Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIProgram for Best Fit algorithm in Memory Management using Linked List

Program for Best Fit algorithm in Memory Management using Linked List

Best fit algorithm for memory management: The memory partition in which there is a minimum loss on the allocation of the process is the best-fit memory partition that is allocated to the process.
We have already discussed one best-fit algorithm using arrays in this article. However, here we are going to look into another approach using a linked list where the deletion of allocated nodes is also possible.
Examples: 

Input : blockSize[] = {100, 500, 200}
        processSize[] = {95, 417, 112, 426} 
Output :
Block with size 426 can't be allocated
Tag    Block ID    Size
0          0        95
1          1        417
2          2        112
After deleting node with tag id 1.
Tag    Block ID    Size
0        0         95
2        2        112
3        1        426

 

Approach: The idea is to assign a unique tag id to each memory block. Each process of different sizes are given block id, which signifies to which memory block they belong to, and unique tag id to delete particular process to free up space. Create a free list of given memory block sizes and allocated list of processes.
Create allocated list: 
Create an allocated list of given process sizes by finding the most appropriate or best memory block to allocate memory from. If the memory block is not found, then simply print it. Otherwise, create a node and add it to the allocated linked list.
Delete process: 
Each process is given a unique tag id. Delete the process node from the allocated linked list to free up some space for other processes. After deleting, use the block id of the deleted node to increase the memory block size in the free list.
Below is the implementation of the approach: 
 

C++




// C++ implementation of program
// for best fit algorithm for memory
// management using linked list
 
#include <bits/stdc++.h>
using namespace std;
 
// Two global counters
int g = 0, k = 0;
 
// Structure for free list
struct free {
    int tag;
    int size;
    struct free* next;
}* free_head = NULL, *prev_free = NULL;
 
// Structure for allocated list
struct alloc {
    int block_id;
    int tag;
    int size;
    struct alloc* next;
}* alloc_head = NULL, *prev_alloc = NULL;
 
// Function to create free
// list with given sizes
void create_free(int c)
{
    struct free* p = (struct free*)
        malloc(sizeof(struct free));
    p->size = c;
    p->tag = g;
    p->next = NULL;
    if (free_head == NULL)
        free_head = p;
    else
        prev_free->next = p;
    prev_free = p;
    g++;
}
 
// Function to print free list which
// prints free blocks of given sizes
void print_free()
{
    struct free* p = free_head;
    cout << "Tag\tSize\n";
    while (p != NULL) {
        cout << p->tag << "\t"
             << p->size << "\n";
        p = p->next;
    }
}
 
// Function to print allocated list which
// prints allocated blocks and their block ids
void print_alloc()
{
    struct alloc* p = alloc_head;
    cout << "Tag\tBlock ID\tSize\n";
    while (p != NULL) {
        cout << p->tag << "\t  " << p->block_id
             << "\t\t" << p->size << "\n";
        p = p->next;
    }
}
 
// Function to allocate memory to
// blocks as per Best fit algorithm
void create_alloc(int c)
{
    // create node for process of given size
    struct alloc* q = (struct alloc*)
        malloc(sizeof(struct alloc));
    q->size = c;
    q->tag = k;
    q->next = NULL;
    struct free* p = free_head;
 
    // Temporary node r of free
    // type to find the best and
    // most suitable free node to
    // allocate space
    struct free* r = (struct free*)
        malloc(sizeof(struct free));
    r->size = 99999;
 
    // Loop to find best choice
    while (p != NULL) {
        if (q->size <= p->size) {
            if (p->size < r->size)
                r = p;
        }
        p = p->next;
    }
 
    // Node found to allocate
    // space from
    if (r->size != 99999) {
        // Adding node to allocated list
        q->block_id = r->tag;
        r->size -= q->size;
        if (alloc_head == NULL)
            alloc_head = q;
        else {
            prev_alloc = alloc_head;
            while (prev_alloc->next != NULL)
                prev_alloc = prev_alloc->next;
            prev_alloc->next = q;
        }
        k++;
    }
 
    // Node with size not found
    else
        cout << "Block with size "
             << c << " can't be allocated\n";
}
 
// Function to delete node from
// allocated list to free some space
void delete_alloc(int t)
{
    // Standard delete function
    // of a linked list node
    struct alloc *p = alloc_head, *q = NULL;
 
    // First, find the node according
    while (p != NULL)
    // to given tag id
    {
        if (p->tag == t)
            break;
        q = p;
        p = p->next;
    }
    if (p == NULL)
        cout << "Tag ID doesn't exist\n";
    else if (p == alloc_head)
        alloc_head = alloc_head->next;
    else
        q->next = p->next;
    struct free* temp = free_head;
    while (temp != NULL) {
        if (temp->tag == p->block_id) {
            temp->size += p->size;
            break;
        }
        temp = temp->next;
    }
}
 
// Driver Code
int main()
{
    int blockSize[] = { 100, 500, 200 };
    int processSize[] = { 95, 417, 112, 426 };
    int m = sizeof(blockSize)
            / sizeof(blockSize[0]);
    int n = sizeof(processSize)
            / sizeof(processSize[0]);
 
    for (int i = 0; i < m; i++)
        create_free(blockSize[i]);
 
    for (int i = 0; i < n; i++)
        create_alloc(processSize[i]);
 
    print_alloc();
 
    // block of tag id 1 deleted
    // to free space for block of size 426
    delete_alloc(1);
 
    create_alloc(426);
    cout << "After deleting block"
         << " with tag id 1.\n";
    print_alloc();
}


Python3




# Python3 implementation of the First
# sit memory management algorithm
# using linked list
 
# Two global counters
g = 0; k = 0
 
# Structure for free list
class free:
    def __init__(self):
        self.tag=-1
        self.size=0
        self.next=None
free_head = None; prev_free = None
 
# Structure for allocated list
class alloc:
    def __init__(self):
        self.block_id=-1
        self.tag=-1
        self.size=0
        self.next=None
 
alloc_head = None;prev_alloc = None
 
# Function to create free
# list with given sizes
def create_free(c):
    global g,prev_free,free_head
    p = free()
    p.size = c
    p.tag = g
    p.next = None
    if free_head is None:
        free_head = p
    else:
        prev_free.next = p
    prev_free = p
    g+=1
 
 
# Function to print free list which
# prints free blocks of given sizes
def print_free():
    p = free_head
    print("Tag\tSize")
    while (p != None) :
        print("{}\t{}".format(p.tag,p.size))
        p = p.next
     
 
 
# Function to print allocated list which
# prints allocated blocks and their block ids
def print_alloc():
    p = alloc_head
    print("Tag\tBlock ID\tSize")
    while (p is not None) :
        print("{}\t{}\t{}\t".format(p.tag,p.block_id,p.size))
        p = p.next
     
 
 
# Function to allocate memory to
# blocks as per First fit algorithm
def create_alloc(c):
    global k,alloc_head
    # create node for process of given size
    q = alloc()
    q.size = c
    q.tag = k
    q.next = None
    p = free_head
 
    # Iterate to find first memory
    # block with appropriate size
    while (p != None) :
        if (q.size <= p.size):
            break
        p = p.next
     
 
    # Node found to allocate
    if (p != None) :
        # Adding node to allocated list
        q.block_id = p.tag
        p.size -= q.size
        if (alloc_head == None):
            alloc_head = q
        else :
            prev_alloc = alloc_head
            while (prev_alloc.next != None):
                prev_alloc = prev_alloc.next
            prev_alloc.next = q
         
        k+=1
     
    else: # Node found to allocate space from
        print("Block of size {} can't be allocated".format(c))
 
# Function to delete node from
# allocated list to free some space
def delete_alloc(t):
    global alloc_head
    # Standard delete function
    # of a linked list node
    p = alloc_head; q = None
 
    # First, find the node according
    # to given tag id
    while (p != None) :
        if (p.tag == t):
            break
        q = p
        p = p.next
     
    if (p == None):
        print("Tag ID doesn't exist")
    elif (p == alloc_head):
        alloc_head = alloc_head.next
    else:
        q.next = p.next
    temp = free_head
    while (temp != None) :
        if (temp.tag == p.block_id) :
            temp.size += p.size
            break
         
        temp = temp.next
     
 
 
# Driver Code
if __name__ == '__main__':
    blockSize = [100, 500, 200]
    processSize = [417, 112, 426, 95]
    m = len(blockSize)
    n = len(processSize)
 
    for i in range(m):
        create_free(blockSize[i])
 
    for i in range(n):
        create_alloc(processSize[i])
 
    print_alloc()
 
    # Block of tag id 0 deleted
    # to free space for block of size 426
    delete_alloc(0)
 
    create_alloc(426)
    print("After deleting block with tag id 0.")
    print_alloc()


Java




// Java implementation of program
// for best fit algorithm for memory
// management using linked list
 
import java.util.*;
 
// Class for free list
class Free {
    int tag;
    int size;
    Free next;
 
    public Free(int tag, int size)
    {
        this.tag = tag;
        this.size = size;
        next = null;
    }
}
 
// Class for allocated list
class Alloc {
    int block_id;
    int tag;
    int size;
    Alloc next;
 
    public Alloc(int tag, int size)
    {
        this.tag = tag;
        this.size = size;
        next = null;
    }
}
 
public class MemoryManagement {
 
    // Two global counters
    static int g = 0, k = 0;
 
    // Head of free list
    static Free free_head = null;
    static Free prev_free = null;
 
    // Head of allocated list
    static Alloc alloc_head = null;
    static Alloc prev_alloc = null;
 
    // Function to create free
    // list with given sizes
    public static void create_free(int c)
    {
        Free p = new Free(g, c);
        if (free_head == null)
            free_head = p;
        else
            prev_free.next = p;
        prev_free = p;
        g++;
    }
 
    // Function to print free list which
    // prints free blocks of given sizes
    public static void print_free()
    {
        Free p = free_head;
        System.out.println("Tag\tSize");
        while (p != null) {
            System.out.println(p.tag + "\t" + p.size);
            p = p.next;
        }
    }
 
    // Function to print allocated list which
    // prints allocated blocks and their block ids
    public static void print_alloc()
    {
        Alloc p = alloc_head;
        System.out.println("Tag\tBlock ID\tSize");
        while (p != null) {
            System.out.println(p.tag + "\t  " + p.block_id
                    + "\t\t" + p.size);
            p = p.next;
        }
    }
 
    // Function to allocate memory to
    // blocks as per Best fit algorithm
    public static void create_alloc(int c)
    {
        // create node for process of given size
        Alloc q = new Alloc(k, c);
 
        Free p = free_head;
 
        // Temporary node r of free
        // type to find the best and
        // most suitable free node to
        // allocate space
        Free r = new Free(0, 99999);
 
        // Loop to find best choice
        while (p != null) {
            if (q.size <= p.size) {
                if (p.size < r.size)
                    r = p;
            }
            p = p.next;
        }
 
        // Node found to allocate
        // space from
        if (r.size != 99999) {
            // Adding node to allocated list
            q.block_id = r.tag;
            r.size -= q.size;
            if (alloc_head == null)
                alloc_head = q;
            else {
                prev_alloc = alloc_head;
                while (prev_alloc.next != null)
                    prev_alloc = prev_alloc.next;
                prev_alloc.next = q;
            }
            k++;
        }
 
        // Node with size not found
        else
            System.out.println("Block with size "
                    + c + " can't be allocated\n");
    }
 
    // Function to delete node from
    // allocated list to free some space
    public static void delete_alloc(int t)
    {
        // Standard delete function
        // of a linked list node
        Alloc p = alloc_head, q = null;
 
        // First, find the node according
        while (p != null)
        // to given tag id
        {
            if (p.tag == t)
                break;
            q = p;
            p = p.next;
        }
        if (p == null)
            System.out.println("Tag ID doesn't exist\n");
        else if (p == alloc_head)
            alloc_head = alloc_head.next;
        else
            q.next = p.next;
        Free temp = free_head;
        while (temp != null) {
            if (temp.tag == p.block_id) {
                temp.size += p.size;
                break;
            }
            temp = temp.next;
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] blockSize = new int[] { 100, 500, 200 };
        int[] processSize = new int[] { 95, 417, 112, 426 };
        int m = blockSize.length;
        int n = processSize.length;
 
        for (int i = 0; i < m; i++)
            create_free(blockSize[i]);
 
        for (int i = 0; i < n; i++)
            create_alloc(processSize[i]);
 
        print_alloc();
 
        // block of tag id 1 deleted
        // to free space for block of size 426
        delete_alloc(1);
 
        create_alloc(426);
        System.out.println("After deleting block"
                + " with tag id 1.");
        print_alloc();
    }
}


C#




// C# implementation of program
// for best fit algorithm for memory
// management using linked list
 
using System;
 
// Class for free list
class Free
{
    public int tag;
    public int size;
    public Free next;
 
    public Free(int tag, int size)
    {
        this.tag = tag;
        this.size = size;
        next = null;
    }
}
 
// Class for allocated list
class Alloc
{
    public int block_id;
    public int tag;
    public int size;
    public Alloc next;
 
    public Alloc(int tag, int size)
    {
        this.tag = tag;
        this.size = size;
        next = null;
    }
}
 
public class MemoryManagement
{
    // Two global counters
    static int g = 0, k = 0;
 
    // Head of free list
    static Free free_head = null;
    static Free prev_free = null;
 
    // Head of allocated list
    static Alloc alloc_head = null;
    static Alloc prev_alloc = null;
 
    // Function to create free
    // list with given sizes
    public static void create_free(int c)
    {
        Free p = new Free(g, c);
        if (free_head == null)
            free_head = p;
        else
            prev_free.next = p;
        prev_free = p;
        g++;
    }
 
    // Function to print free list which
    // prints free blocks of given sizes
    public static void print_free()
    {
        Free p = free_head;
        Console.WriteLine("Tag\tSize");
        while (p != null)
        {
            Console.WriteLine(p.tag + "\t" + p.size);
            p = p.next;
        }
    }
 
    // Function to print allocated list which
    // prints allocated blocks and their block ids
    public static void print_alloc()
    {
        Alloc p = alloc_head;
        Console.WriteLine("Tag\tBlock ID\tSize");
        while (p != null)
        {
            Console.WriteLine(p.tag + "\t  " + p.block_id
                    + "\t\t" + p.size);
            p = p.next;
        }
    }
 
    // Function to allocate memory to
    // blocks as per Best fit algorithm
    public static void create_alloc(int c)
    {
        // create node for process of given size
        Alloc q = new Alloc(k, c);
 
        Free p = free_head;
 
        // Temporary node r of free
        // type to find the best and
        // most suitable free node to
        // allocate space
        Free r = new Free(0, 99999);
 
        // Loop to find best choice
        while (p != null)
        {
            if (q.size <= p.size)
            {
                if (p.size < r.size)
                    r = p;
            }
            p = p.next;
        }
 
        // Node found to allocate
        // space from
        if (r.size != 99999)
        {
            // Adding node to allocated list
            q.block_id = r.tag;
            r.size -= q.size;
            if (alloc_head == null)
                alloc_head = q;
            else
            {
                prev_alloc = alloc_head;
                while (prev_alloc.next != null)
                    prev_alloc = prev_alloc.next;
                prev_alloc.next = q;
            }
            k++;
        }
 
        // Node with size not found
        else
            Console.WriteLine("Block with size "
                    + c + " can't be allocated\n");
    }
 
    // Function to delete node from
    // allocated list to free some space
    public static void delete_alloc(int t)
    {
        // Standard delete function
        // of a linked list node
        Alloc p = alloc_head, q = null;
 
        // First, find the node according
        while (p != null)
        // to given tag id
        {
            if (p.tag == t)
                break;
            q = p;
            p = p.next;
        }
        if (p == null)
            Console.WriteLine("Tag ID doesn't exist\n");
        else if (p == alloc_head)
            alloc_head = alloc_head.next;
        else
            q.next = p.next;
        Free temp = free_head;
        while (temp != null)
        {
            if (temp.tag == p.block_id)
            {
                temp.size += p.size;
                break;
            }
            temp = temp.next;
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] blockSize = new int[] { 100, 500, 200 };
        int[] processSize = new int[] { 95, 417, 112, 426 };
        int m = blockSize.Length;
        int n = processSize.Length;
 
        for (int i = 0; i < m; i++)
            create_free(blockSize[i]);
 
        for (int i = 0; i < n; i++)
            create_alloc(processSize[i]);
 
        print_alloc();
 
        // block of tag id 1 deleted
        // to free space for block of size 426
        delete_alloc(1);
 
        create_alloc(426);
        Console.WriteLine("After deleting block"
                + " with tag id 1.");
        print_alloc();
    }
}


Javascript




// Javascript implementation of program
// for best fit algorithm for memory
// management using linked list
 
// Two global counters
let g = 0, k = 0;
 
// Structure for free list
class Free {
    constructor(tag, size, next) {
        this.tag = tag;
        this.size = size;
        this.next = next;
    }
}
 
let freeHead = null, prevFree = null;
 
// Structure for allocated list
class Alloc {
    constructor(blockId, tag, size, next) {
        this.blockId = blockId;
        this.tag = tag;
        this.size = size;
        this.next = next;
    }
}
 
let allocHead = null, prevAlloc = null;
 
// Function to create free
// list with given sizes
function createFree(c) {
    let p = new Free(g, c, null);
    if (freeHead == null) {
        freeHead = p;
    } else {
        prevFree.next = p;
    }
    prevFree = p;
    g++;
}
 
// Function to print free list which
// prints free blocks of given sizes
function printFree() {
    let p = freeHead;
    console.log("Tag\tSize");
    while (p != null) {
        console.log(p.tag + "\t" + p.size);
        p = p.next;
    }
}
 
// Function to print allocated list which
// prints allocated blocks and their block ids
function printAlloc() {
    let p = allocHead;
    console.log("Tag\tBlock ID\tSize");
    while (p != null) {
        console.log(p.tag + "\t  " + p.blockId + "\t\t" + p.size);
        p = p.next;
    }
}
 
 
// Function to allocate memory to
// blocks as per Best fit algorithm
function createAlloc(c) {
 
    // create node for process of given size
    let q = new Alloc(null, k, c, null);
    let p = freeHead;
     
    // Temporary node r of free
    // type to find the best and
    // most suitable free node to
    // allocate space
    let r = new Free(null, 0, null);
    r.size = 99999;
     
    // Loop to find best choice
    while (p != null) {
        if (q.size <= p.size) {
            if (p.size < r.size) {
                r = p;
            }
        }
        p = p.next;
    }
     
     
    // Node found to allocate
    // space from
    if (r.size != 99999) {
        // Adding node to allocated list
        q.blockId = r.tag;
        r.size -= q.size;
        if (allocHead == null) {
            allocHead = q;
        } else {
            prevAlloc = allocHead;
            while (prevAlloc.next != null) {
                prevAlloc = prevAlloc.next;
            }
            prevAlloc.next = q;
        }
        k++;
    }
 
    // Node with size not found
    else {
        console.log("Block with size " + c + " can't be allocated");
    }
}
 
// Function to delete node from
// allocated list to free some space
function deleteAlloc(t) {
 
    // Standard delete function
    // of a linked list node
    let p = allocHead, q = null;
     
    // First, find the node according
    while (p != null) {
        // to given tag id
        if (p.tag == t) {
            break;
        }
        q = p;
        p = p.next;
    }
    if (p == null) {
        console.log("Tag ID doesn't exist");
    } else if (p == allocHead) {
        allocHead = allocHead.next;
    } else {
        q.next = p.next;
    }
    let temp = freeHead;
    while (temp != null) {
        if (temp.tag == p.blockId) {
            temp.size += p.size;
            break;
        }
        temp = temp.next;
    }
}
 
// Driver Code
function main() {
  const blockSize = [100, 500, 200];
  const processSize = [95, 417, 112, 426];
  const m = blockSize.length;
  const n = processSize.length;
 
  for (let i = 0; i < m; i++) {
    createFree(blockSize[i]);
  }
 
  for (let i = 0; i < n; i++) {
    createAlloc(processSize[i]);
  }
 
  printAlloc();
   
  // block of tag id 1 deleted
  // to free space for block of size 426
  deleteAlloc(1);
 
  createAlloc(426);
  console.log("After deleting block with tag id 1.");
  printAlloc();
}
 
// this code is contributed by bhardwajji


Output: 

Block with size 426 can't be allocated
Tag    Block ID    Size
0      0        95
1      1        417
2      2        112
After deleting block with tag id 1.
Tag    Block ID    Size
0      0        95
2      2        112
3      1        426

 

The time complexity of this program is O(m+n) as we traverse the blockSize and processSize array of sizes and create both free and allocated list. 
The space complexity is O(m+n) as we create m+n nodes for free and allocated list respectively.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments