Given a linked list, the task is to print the product of alternate nodes of the given linked list.
Examples:
Input : 1 -> 8 -> 3 -> 10 -> 17 -> 22 -> 29 -> 42
Output : 1479
Alternate nodes : 1 -> 3 -> 17 -> 29
Input : 10 -> 17 -> 33 -> 38 -> 73
Output : 24090
Alternate nodes : 10 -> 33 -> 73
Iterative Approach:
- Traverse the whole linked list.
- Set prod = 1 and count=0.
- Multiply the data of the node with the prod when the count is even.
- Visit the next node.
Below is the implementation of this approach:
C++
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
struct Node* next;
};
int productAlternateNode( struct Node* head)
{
int count = 0;
int prod = 1;
while (head != NULL) {
if (count % 2 == 0)
prod *= head->data;
count++;
head = head->next;
}
return prod;
}
void push( struct Node** head_ref, int new_data)
{
struct Node* new_node = new Node;
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;
}
int main()
{
struct Node* head = NULL;
push(&head, 12);
push(&head, 29);
push(&head, 11);
push(&head, 23);
push(&head, 8);
cout << productAlternateNode(head);
return 0;
}
|
C
#include <stdio.h>
#include <stdlib.h>
struct Node {
int data;
struct Node* next;
};
int productAlternateNode( struct Node* head)
{
int count = 0;
int prod = 1;
while (head != NULL) {
if (count % 2 == 0)
prod *= head->data;
count++;
head = head->next;
}
return prod;
}
void push( struct Node** head_ref, int new_data)
{
struct Node* new_node = ( struct Node*) malloc ( sizeof ( struct Node));
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;
}
int main()
{
struct Node* head = NULL;
push(&head, 12);
push(&head, 29);
push(&head, 11);
push(&head, 23);
push(&head, 8);
printf ( " %d " , productAlternateNode(head));
return 0;
}
|
Java
class GFG
{
static class Node
{
int data;
Node next;
};
static int productAlternateNode( Node head)
{
int count = 0 ;
int product = 1 ;
while (head != null )
{
if (count % 2 == 0 )
product *= head.data;
count++;
head = head.next;
}
return product;
}
static Node push( Node head_ref, int new_data)
{
Node new_node = new Node();
new_node.data = new_data;
new_node.next = (head_ref);
(head_ref) = new_node;
return head_ref;
}
public static void main(String args[])
{
Node head = null ;
head = push(head, 12 );
head = push(head, 29 );
head = push(head, 11 );
head = push(head, 23 );
head = push(head, 8 );
System.out.printf( " %d " , productAlternateNode(head));
}
}
|
Python3
import math
class Node:
def __init__( self , data):
self .data = data
self . next = None
def productAlternateNode(head):
count = 0
prod = 1
while (head ! = None ):
if (count % 2 = = 0 ):
prod * = head.data
count = count + 1
head = head. next
return prod
def push(head_ref, new_data):
new_node = Node(new_data)
new_node. next = head_ref
head_ref = new_node
return head_ref
if __name__ = = '__main__' :
head = None
head = push(head, 12 )
head = push(head, 29 )
head = push(head, 11 )
head = push(head, 23 )
head = push(head, 8 )
print (productAlternateNode(head))
|
C#
using System;
class GFG
{
public class Node
{
public int data;
public Node next;
};
static int productAlternateNode( Node head)
{
int count = 0;
int product = 1;
while (head != null )
{
if (count % 2 == 0)
product *= head.data;
count++;
head = head.next;
}
return product;
}
static Node push( Node head_ref, int new_data)
{
Node new_node = new Node();
new_node.data = new_data;
new_node.next = (head_ref);
(head_ref) = new_node;
return head_ref;
}
public static void Main(String []args)
{
Node head = null ;
head = push(head, 12);
head = push(head, 29);
head = push(head, 11);
head = push(head, 23);
head = push(head, 8);
Console.Write( " {0} " , productAlternateNode(head));
}
}
|
Javascript
<script>
class Node {
constructor(val) {
this .data = val;
this .next = null ;
}
}
function productAlternateNode(head) {
var count = 0;
var product = 1;
while (head != null ) {
if (count % 2 == 0)
product *= head.data;
count++;
head = head.next;
}
return product;
}
function push(head_ref , new_data) {
var new_node = new Node();
new_node.data = new_data;
new_node.next = (head_ref);
(head_ref) = new_node;
return head_ref;
}
var head = null ;
head = push(head, 12);
head = push(head, 29);
head = push(head, 11);
head = push(head, 23);
head = push(head, 8);
document.write( productAlternateNode(head));
</script>
|
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(1)
Recursive Approach:
- Initialize a static variable(say flag).
- If the flag is odd, multiply the node with the product.
- Increase head and flag by 1, and recurse for next nodes.
Below is the implementation of this approach:
C++
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
struct Node* next;
};
void push( struct Node** head_ref, int new_data)
{
struct Node* new_node = new Node();
new_node->data = new_data;
new_node->next = (*head_ref);
(*head_ref) = new_node;
}
void productAlternateNodes( struct Node* node,
int & prod, bool isOdd = true )
{
if (node == NULL)
return ;
if (isOdd == true )
prod = prod * (node->data);
productAlternateNodes(node->next, prod, !isOdd);
}
int main()
{
struct Node* head = NULL;
push(&head, 12);
push(&head, 29);
push(&head, 11);
push(&head, 23);
push(&head, 8);
int prod = 1;
productAlternateNodes(head, prod);
cout << prod;
return 0;
}
|
Java
class GFG
{
static class Node
{
int data;
Node next;
};
static Node push(Node head_ref, int new_data)
{
Node new_node = new Node();
new_node.data = new_data;
new_node.next = (head_ref);
(head_ref) = new_node;
return head_ref;
}
static int prod;
static void productAlternateNodes(Node node,
boolean isOdd)
{
if (node == null )
return ;
if (isOdd == true )
prod = prod * (node.data);
productAlternateNodes(node.next, !isOdd);
}
public static void main(String args[])
{
Node head = null ;
head = push(head, 12 );
head = push(head, 29 );
head = push(head, 11 );
head = push(head, 23 );
head = push(head, 8 );
prod = 1 ;
productAlternateNodes(head, true );
System.out.println( prod);
}
}
|
Python3
class Node:
def __init__( self , data):
self .data = data
self . next = next
def push(head_ref, new_data):
new_node = Node( 0 )
new_node.data = new_data
new_node. next = (head_ref)
(head_ref) = new_node
return head_ref
prod = 1
def productAlternateNodes(node, isOdd):
global prod
if (node = = None ):
return
if (isOdd = = True ):
prod = prod * (node.data)
productAlternateNodes(node. next , not isOdd)
head = None
head = push(head, 12 )
head = push(head, 29 )
head = push(head, 11 )
head = push(head, 23 )
head = push(head, 8 )
prod = 1
productAlternateNodes(head, True )
print (prod)
|
C#
using System;
class GFG
{
public class Node
{
public int data;
public Node next;
};
static Node push(Node head_ref,
int new_data)
{
Node new_node = new Node();
new_node.data = new_data;
new_node.next = (head_ref);
(head_ref) = new_node;
return head_ref;
}
static int prod;
static void productAlternateNodes(Node node,
bool isOdd)
{
if (node == null )
return ;
if (isOdd == true )
prod = prod * (node.data);
productAlternateNodes(node.next, !isOdd);
}
public static void Main(String []args)
{
Node head = null ;
head = push(head, 12);
head = push(head, 29);
head = push(head, 11);
head = push(head, 23);
head = push(head, 8);
prod = 1;
productAlternateNodes(head, true );
Console.WriteLine( prod);
}
}
|
Javascript
<script>
class Node
{
constructor()
{
this .data = 0;
this .next = null ;
}
}
function push(head_ref, new_data)
{
let new_node = new Node();
new_node.data = new_data;
new_node.next = (head_ref);
(head_ref) = new_node;
return head_ref;
}
let prod;
function productAlternateNodes(node,isOdd)
{
if (node == null )
return ;
if (isOdd == true )
prod = prod * (node.data);
productAlternateNodes(node.next, !isOdd);
}
let head = null ;
head = push(head, 12);
head = push(head, 29);
head = push(head, 11);
head = push(head, 23);
head = push(head, 8);
prod = 1;
productAlternateNodes(head, true );
document.write( prod);
</script>
|
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!