Friday, January 10, 2025
Google search engine
HomeData Modelling & AIProduct of proper divisors of a number for Q queries

Product of proper divisors of a number for Q queries

Given an integer N, the task is to find the product of proper divisors of the number modulo 109 + 7 for Q queries.

Examples:

Input: Q = 4, arr[] = { 4, 6, 8, 16 };
Output: 2 6 8 64
Explanation:
4 => 1, 2 = 1 * 2 = 2 
6 => 1, 2, 3 = 1 * 2 * 3 = 6
8 => 1, 2, 4 = 1 * 2 * 4 = 8
16 => 1, 2, 4, 8 = 1 * 2 * 4 * 8 = 64

Input: arr[] = { 3, 6, 9, 12 }
Output: 1 6 3 144

 

Approach: The idea is to pre-compute and store product of proper divisors of elements with the help of Sieve of Eratosthenes.

Below is the implementation of the above approach:

C++




// C++ implementation of
// the above approach
 
#include <bits/stdc++.h>
#define ll long long int
#define mod 1000000007
 
using namespace std;
 
vector<ll> ans(100002, 1);
 
// Function to precompute the product
// of proper divisors of a number at
// it's corresponding index
void preCompute()
{
    for (int i = 2; i <= 100000 / 2; i++) {
        for (int j = 2 * i; j <= 100000; j += i) {
            ans[j] = (ans[j] * i) % mod;
        }
    }
}
 
int productOfProperDivi(int num)
{
 
    // Returning the pre-computed
    // values
    return ans[num];
}
 
// Driver code
int main()
{
    preCompute();
    int queries = 5;
    int a[queries] = { 4, 6, 8, 16, 36 };
 
    for (int i = 0; i < queries; i++) {
        cout << productOfProperDivi(a[i])
             << ", ";
    }
    return 0;
}


Java




// Java implementation of
// the above approach
import java.util.*;
class GFG
{
    static final int mod = 1000000007;
 
    static long[] ans = new long[100002];
 
    // Function to precompute the product
    // of proper divisors of a number at
    // it's corresponding index
    static void preCompute()
    {
        for (int i = 2; i <= 100000 / 2; i++)
        {
            for (int j = 2 * i; j <= 100000; j += i)
            {
                ans[j] = (ans[j] * i) % mod;
            }
        }
    }
 
    static long productOfProperDivi(int num)
    {
 
        // Returning the pre-computed
        // values
        return ans[num];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        Arrays.fill(ans, 1);
        preCompute();
        int queries = 5;
        int[] a = { 4, 6, 8, 16, 36 };
 
        for (int i = 0; i < queries; i++)
        {
            System.out.print(productOfProperDivi(a[i]) + ", ");
        }
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of
# the above approach
mod = 1000000007
 
ans = [1] * (100002)
 
# Function to precompute the product
# of proper divisors of a number at
# it's corresponding index
def preCompute():
 
    for i in range(2, 100000 // 2 + 1):
        for j in range(2 * i, 100001, i):
            ans[j] = (ans[j] * i) % mod
 
def productOfProperDivi(num):
 
    # Returning the pre-computed
    # values
    return ans[num]
 
# Driver code
if __name__ == "__main__":
 
    preCompute()
    queries = 5
    a = [ 4, 6, 8, 16, 36 ]
 
    for i in range(queries):
        print(productOfProperDivi(a[i]), end = ", ")
 
# This code is contributed by chitranayal


C#




// C# implementation of
// the above approach
using System;
 
class GFG{
     
static readonly int mod = 1000000007;
 
static long[] ans = new long[100002];
 
// Function to precompute the product
// of proper divisors of a number at
// it's corresponding index
static void preCompute()
{
    for(int i = 2; i <= 100000 / 2; i++)
    {
        for(int j = 2 * i; j <= 100000; j += i)
        {
            ans[j] = (ans[j] * i) % mod;
        }
    }
}
 
static long productOfProperDivi(int num)
{
 
    // Returning the pre-computed
    // values
    return ans[num];
}
 
// Driver code
public static void Main(String[] args)
{
    for(int i = 0 ; i < 100002; i++)
        ans[i] = 1;
         
    preCompute();
 
    int queries = 5;
    int[] a = { 4, 6, 8, 16, 36 };
 
    for(int i = 0; i < queries; i++)
    {
        Console.Write(productOfProperDivi(a[i]) + ", ");
    }
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript implementation of
// the above approach
 
mod = 1000000007
 
ans = Array(100002).fill(1)
 
// Function to precompute the product
// of proper divisors of a number at
// it's corresponding index
function preCompute()
{
    for (var i = 2; i <= 100000 / 2; i++) {
        for (var j = 2 * i; j <= 100000; j += i) {
            ans[j] = (ans[j] * i) % mod;
        }
    }
}
 
function productOfProperDivi(num)
{
 
    // Returning the pre-computed
    // values
    return ans[num];
}
 
// Driver code
preCompute();
var queries = 5;
var a = [ 4, 6, 8, 16, 36 ];
for (var i = 0; i < queries; i++) {
    document.write( productOfProperDivi(a[i])
         + ", ");
}
 
</script>


Output

2, 6, 8, 64, 279936,


Using Sieve of Eratosthenes:

Approach:

We can use the Sieve of Eratosthenes algorithm to precompute all the divisors of a number and then use them to compute the product of proper divisors. We can store the computed values in an array to reduce the time complexity of subsequent queries.

We first create a function sieve_of_eratosthenes that generates a list of divisors for each number from 1 to n using the Sieve of Eratosthenes algorithm. This function has a time complexity of O(N log N) and a space complexity of O(NM), where N is the maximum value in the input array, and M is the maximum number of divisors a number in the input array can have.

We create another function product_of_proper_divisors that takes an input array arr and the number of queries Q. For each query, we first find the divisors of the given number using the divisors list generated by the sieve_of_eratosthenes function. We then compute the product of all divisors except for the number itself. Finally, we print the product. The time complexity of this function is O(QM), where M is the maximum number of divisors a number in the input array can have.

We create two examples of input arrays arr, and we call the product_of_proper_divisors function for each of them. We print the input and output for each example.

C++




#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
 
// Function to generate all divisors of numbers
// up to n using the Sieve of Eratosthenes
vector<vector<int>> sieve_of_eratosthenes(int n) {
    vector<vector<int>> divisors(n+1);
    for (int i = 1; i <= n; i++) {
        for (int j = i; j <= n; j += i) {
            divisors[j].push_back(i);
        }
    }
    return divisors;
}
 
// Function to calculate the product of
// all proper divisors of each number in arr
void product_of_proper_divisors(int arr[], int Q)
{
   
    // Generate all divisors up to the maximum number in arr
    vector<vector<int>> divisors = sieve_of_eratosthenes(*max_element(arr, arr+Q));
   
    // Calculate the product of all proper divisors for each number in arr
    for (int i = 0; i < Q; i++) {
        int n = arr[i];
        int product = 1;
       
        // Multiply all divisors except for the number itself
        for (int j = 0; j < divisors[n].size()-1; j++) {
            product *= divisors[n][j];
        }
        cout << product << endl;
    }
}
 
int main() {
    int arr[] = {4, 6, 8, 16};
    int Q = sizeof(arr) / sizeof(arr[0]);
    cout << "Input: Q = " << Q << ", arr[] = {";
    for (int i = 0; i < Q-1; i++) {
        cout << arr[i] << ", ";
    }
    cout << arr[Q-1] << "}" << endl;
    cout << "Output:" << endl;
    product_of_proper_divisors(arr, Q);
 
    int arr2[] = {3, 6, 9, 12};
    Q = sizeof(arr2) / sizeof(arr2[0]);
    cout << "Input: Q = " << Q << ", arr[] = {";
    for (int i = 0; i < Q-1; i++) {
        cout << arr2[i] << ", ";
    }
    cout << arr2[Q-1] << "}" << endl;
    cout << "Output:" << endl;
    product_of_proper_divisors(arr2, Q);
 
    return 0;
}


Java




// Java code for the given approach
import java.util.*;
 
public class Main {
     
    // Function to generate all divisors of numbers
    // up to n using the Sieve of Eratosthenes
    static List<List<Integer>> sieve_of_eratosthenes(int n) {
        List<List<Integer>> divisors = new ArrayList<>();
        for (int i = 0; i <= n; i++) {
            divisors.add(new ArrayList<Integer>());
        }
        for (int i = 1; i <= n; i++) {
            for (int j = i; j <= n; j += i) {
                divisors.get(j).add(i);
            }
        }
        return divisors;
    }
     
    // Function to calculate the product of
    // all proper divisors of each number in arr
    static void product_of_proper_divisors(int[] arr, int Q) {
         
        // Generate all divisors up to the maximum number in arr
        List<List<Integer>> divisors = sieve_of_eratosthenes(Arrays.stream(arr).max().getAsInt());
 
        // Calculate the product of all proper divisors for each number in arr
        for (int i = 0; i < Q; i++) {
            int n = arr[i];
            int product = 1;
             
            // Multiply all divisors except for the number itself
            for (int j = 0; j < divisors.get(n).size()-1; j++) {
                product *= divisors.get(n).get(j);
            }
            System.out.println(product);
        }
    }
 
    public static void main(String[] args) {
        int[] arr = {4, 6, 8, 16};
        int Q = arr.length;
        System.out.print("Input: Q = " + Q + ", arr[] = {");
        for (int i = 0; i < Q-1; i++) {
            System.out.print(arr[i] + ", ");
        }
        System.out.println(arr[Q-1] + "}");
        System.out.println("Output:");
        product_of_proper_divisors(arr, Q);
 
        int[] arr2 = {3, 6, 9, 12};
        Q = arr2.length;
        System.out.print("Input: Q = " + Q + ", arr[] = {");
        for (int i = 0; i < Q-1; i++) {
            System.out.print(arr2[i] + ", ");
        }
        System.out.println(arr2[Q-1] + "}");
        System.out.println("Output:");
        product_of_proper_divisors(arr2, Q);
    }
}
 
// This code is contributed by Utkarsh


Python3




def sieve_of_eratosthenes(n):
    divisors = [[] for i in range(n+1)]
    for i in range(1, n+1):
        for j in range(i, n+1, i):
            divisors[j].append(i)
    return divisors
 
def product_of_proper_divisors(arr, Q):
    divisors = sieve_of_eratosthenes(max(arr))
    for i in range(Q):
        n = arr[i]
        product = 1
        for divisor in divisors[n][:-1]:
            product *= divisor
        print(product)
 
# Example usage
arr = [4, 6, 8, 16]
Q = len(arr)
print("Input: Q =", Q, "arr[] =", arr)
print("Output:")
product_of_proper_divisors(arr, Q)
 
arr = [3, 6, 9, 12]
Q = len(arr)
print("Input: Q =", Q, "arr[] =", arr)
print("Output:")
product_of_proper_divisors(arr, Q)


C#




// C# code for the given approach
using System;
using System.Collections.Generic;
using System.Linq;
 
public class GFG
{
    // Function to generate all divisors of numbers
    // up to n using the Sieve of Eratosthenes
    static List<List<int>> sieve_of_eratosthenes(int n)
    {
        List<List<int>> divisors = new List<List<int>>();
        for (int i = 0; i <= n; i++)
        {
            divisors.Add(new List<int>());
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = i; j <= n; j += i)
            {
                divisors[j].Add(i);
            }
        }
        return divisors;
    }
 
    // Function to calculate the product of
    // all proper divisors of each number in arr
    static void product_of_proper_divisors(int[] arr, int Q)
    {
        // Generate all divisors up to the maximum number in arr
        List<List<int>> divisors = sieve_of_eratosthenes(arr.Max());
 
        // Calculate the product of all proper divisors for each number in arr
        for (int i = 0; i < Q; i++)
        {
            int n = arr[i];
            int product = 1;
 
            // Multiply all divisors except for the number itself
            for (int j = 0; j < divisors[n].Count - 1; j++)
            {
                product *= divisors[n][j];
            }
            Console.WriteLine(product);
        }
    }
 
    public static void Main(string[] args)
    {
        int[] arr = { 4, 6, 8, 16 };
        int Q = arr.Length;
        Console.Write("Input: Q = " + Q + ", arr[] = {");
        for (int i = 0; i < Q - 1; i++)
        {
            Console.Write(arr[i] + ", ");
        }
        Console.WriteLine(arr[Q - 1] + "}");
        Console.WriteLine("Output:");
        product_of_proper_divisors(arr, Q);
 
        int[] arr2 = { 3, 6, 9, 12 };
        Q = arr2.Length;
        Console.Write("Input: Q = " + Q + ", arr[] = {");
        for (int i = 0; i < Q - 1; i++)
        {
            Console.Write(arr2[i] + ", ");
        }
        Console.WriteLine(arr2[Q - 1] + "}");
        Console.WriteLine("Output:");
        product_of_proper_divisors(arr2, Q);
    }
}
 
// This code is contributed by Pushpesh Raj


Javascript




//Javascript code for the above approach
// Function to generate all divisors of numbers
// up to n using a modified Sieve of Eratosthenes
function sieveOfEratosthenes(n) {
    const divisors = new Array(n + 1).fill(null).map(() => []);
    for (let i = 1; i <= n; i++) {
        for (let j = i; j <= n; j += i) {
            divisors[j].push(i);
        }
    }
    return divisors;
}
 
// Function to calculate the product of
// all proper divisors of each number in arr
function productOfProperDivisors(arr) {
    // Generate all divisors up to the maximum number in arr
    const divisors = sieveOfEratosthenes(Math.max(...arr));
     
    // Calculate the product of all proper divisors for each number in arr
    for (let i = 0; i < arr.length; i++) {
        const n = arr[i];
        let product = 1;
 
        // Multiply all divisors except for the number itself
        for (let j = 0; j < divisors[n].length - 1; j++) {
            product *= divisors[n][j];
        }
        console.log(product);
    }
}
 
const arr1 = [4, 6, 8, 16];
console.log("Input: arr[] =", arr1);
console.log("Output:");
productOfProperDivisors(arr1);
 
const arr2 = [3, 6, 9, 12];
console.log("Input: arr[] =", arr2);
console.log("Output:");
productOfProperDivisors(arr2);


Output

Input: Q = 4 arr[] = [4, 6, 8, 16]
Output:
2
6
8
64
Input: Q = 4 arr[] = [3, 6, 9, 12]
Output:
1
6
3
144


Time Complexity: O(Nlog(log(N)) + Qsqrt(N)), where Q is the number of queries and N is the maximum number in the array.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments