Friday, January 10, 2025
Google search engine
HomeData Modelling & AIProduct of divisors of a number from a given list of its...

Product of divisors of a number from a given list of its prime factors

Given an array arr[] representing a list of prime factors of a given number, the task is to find the product of divisors of that number. 
Note: Since the product can be, very large printed, the answer is mod 109 + 7.

Examples:  

Input: arr[] = {2, 2, 3} 
Output: 1728 
Explanation: 
Product of the given prime factors = 2 * 2 * 3 = 12. 
Divisors of 12 are {1, 2, 3, 4, 6, 12}. 
Hence, the product of divisors is 1728.

Input: arr[] = {11, 11} 
Output: 1331 
 

Naive Approach: 
Generate the number N from its list of prime factors, then find all its divisors in O(?N) computational complexity and keep computing their product. Print the final product obtained. 
Time Complexity: O(N3/2
Auxiliary Space: O(1)
Efficient Approach: 
To solve the problem, the following observations need to be taken into account: 
 

  1. According to Fermat’s little theorem, a(m – 1) = 1 (mod m) which can be further extended to ax = a x % (m – 1) (mod m)
  2. For a prime p raised to the power a, f(pa) = p(a * (a + 1) / 2)).
  3. Hence, f(a * b) = f(a)(d(b)) * f(b)(d(a)), where d(a), d(b) denotes the number of divisors in a and b respectively.

Follow the steps below to solve the problem: 
 

  • Find the frequency of every prime in the given list (using a HashMap/Dictionary).
  • Using the second observation, for every ith prime, calculate: 

fp = power(p[i], (cnt[i] + 1) * cnt[i] / 2), where cnt[i] denotes the frequency of that prime 

  • Using the third observation, update the required product: 

 ans = power(ans, (cnt[i] + 1)) * power(fp, d) % MOD, where d is the number of divisors up to (i – 1)th prime 

  • The number of divisors d is updated using Fermat’s Little Theorem:

 d = d * (cnt[i] + 1) % (MOD – 1)  

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
int MOD = 1000000007;
 
// Function to calculate (a^b)% m
int power(int a, int b, int m)
{
    a %= m;
    int res = 1;
    while (b > 0) {
        if (b & 1)
            res = ((res % m) * (a % m))
                  % m;
 
        a = ((a % m) * (a % m)) % m;
 
        b >>= 1;
    }
 
    return res % m;
}
 
// Function to calculate and return
// the product of divisors
int productOfDivisors(int p[], int n)
{
 
    // Stores the frequencies of
    // prime divisors
    map<int, int> prime;
 
    for (int i = 0; i < n; i++) {
        prime[p[i]]++;
    }
    int product = 1, d = 1;
 
    // Iterate over the prime
    // divisors
    for (auto itr : prime) {
 
        int val
            = power(itr.first,
                    (itr.second) * (itr.second + 1) / 2,
                    MOD);
 
        // Update the product
        product = (power(product, itr.second + 1, MOD)
                   * power(val, d, MOD))
                  % MOD;
 
        // Update the count of divisors
        d = (d * (itr.second + 1)) % (MOD - 1);
    }
 
    return product;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 11, 11 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout <<productOfDivisors(arr,n);
 
 
 }


Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG{
 
static int MOD = 1000000007;
 
// Function to calculate (a^b)% m
static int power(int a, int b, int m)
{
    a %= m;
    int res = 1;
    while (b > 0)
    {
        if (b % 2 == 1)
            res = ((res % m) * (a % m)) % m;
 
        a = ((a % m) * (a % m)) % m;
 
        b >>= 1;
    }
    return res % m;
}
 
// Function to calculate and return
// the product of divisors
static int productOfDivisors(int p[], int n)
{
 
    // Stores the frequencies of
    // prime divisors
    HashMap<Integer,
            Integer> prime = new HashMap<Integer,
                                         Integer>();
 
    for (int i = 0; i < n; i++)
    {
        if(prime.containsKey(p[i]))
            prime.put(p[i], prime.get(p[i]) + 1);
        else
            prime.put(p[i], 1);
             
    }
    int product = 1, d = 1;
 
    // Iterate over the prime
    // divisors
    for (Map.Entry<Integer,
                   Integer> itr : prime.entrySet())
    {
        int val = power(itr.getKey(),
                       (itr.getValue()) *
                       (itr.getValue() + 1) / 2, MOD);
 
        // Update the product
        product = (power(product, itr.getValue() + 1, MOD) *
                   power(val, d, MOD)) % MOD;
 
        // Update the count of divisors
        d = (d * (itr.getValue() + 1)) % (MOD - 1);
    }
    return product;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 11, 11 };
    int n = arr.length;
 
    System.out.println(productOfDivisors(arr,n));
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program to implement
# the above approach
from collections import defaultdict
 
MOD = 1000000007
 
# Function to calculate (a^b)% m
def power(a, b, m):
 
    a %= m
    res = 1
 
    while (b > 0):
        if (b & 1):
            res = ((res % m) * (a % m)) % m
 
        a = ((a % m) * (a % m)) % m
        b >>= 1
     
    return res % m
 
# Function to calculate and return
# the product of divisors
def productOfDivisors(p, n):
 
    # Stores the frequencies of
    # prime divisors
    prime = defaultdict(int)
 
    for i in range(n):
        prime[p[i]] += 1
     
    product, d = 1, 1
 
    # Iterate over the prime
    # divisors
    for itr in prime.keys():
        val = (power(itr, (prime[itr]) *
                          (prime[itr] + 1) // 2, MOD))
 
        # Update the product
        product = (power(product,
                         prime[itr] + 1, MOD) *
                   power(val, d, MOD) % MOD)
 
        # Update the count of divisors
        d = (d * (prime[itr] + 1)) % (MOD - 1)
 
    return product
 
# Driver Code
if __name__ == "__main__":
 
    arr = [ 11, 11 ]
    n = len(arr)
     
    print(productOfDivisors(arr, n))
 
# This code is contributed by chitranayal


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
static int MOD = 1000000007;                    
 
// Function to calculate (a^b)% m
static int power(int a, int b, int m)
{
    a %= m;
    int res = 1;
    while (b > 0)
    {
        if (b % 2 == 1)
            res = ((res % m) * (a % m)) % m;
 
        a = ((a % m) * (a % m)) % m;
        b >>= 1;
    }
    return res % m;
}
 
// Function to calculate and return
// the product of divisors
static int productOfDivisors(int []p, int n)
{
     
    // Stores the frequencies of
    // prime divisors
    Dictionary<int,
               int> prime = new Dictionary<int,
                                           int>();
 
    for(int i = 0; i < n; i++)
    {
        if(prime.ContainsKey(p[i]))
            prime[p[i]] = prime[p[i]] + 1;
        else
            prime.Add(p[i], 1);
    }
    int product = 1, d = 1;
 
    // Iterate over the prime
    // divisors
    foreach(KeyValuePair<int,
                         int> itr in prime)
    {
        int val = power(itr.Key,
                       (itr.Value) *
                       (itr.Value + 1) / 2, MOD);
 
        // Update the product
        product = (power(product, itr.Value + 1, MOD) *
                   power(val, d, MOD)) % MOD;
 
        // Update the count of divisors
        d = (d * (itr.Value + 1)) % (MOD - 1);
    }
    return product;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 11, 11 };
    int n = arr.Length;
 
    Console.WriteLine(productOfDivisors(arr,n));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript Program to implement
// the above approach
 
var MOD = 1000000007;
 
// Function to calculate (a^b)% m
function power(a, b, m)
{
    a %= m;
    var res = 1;
    while (b > 0) {
        if (b & 1)
            res = ((res % m) * (a % m))
                  % m;
 
        a = ((a % m) * (a % m)) % m;
 
        b >>= 1;
    }
 
    return res % m;
}
 
// Function to calculate and return
// the product of divisors
function productOfDivisors(p, n)
{
 
    // Stores the frequencies of
    // prime divisors
    var prime = new Map(); 
 
    for (var i = 0; i < n; i++) {
        if(prime.has(p[i]))
            prime.set(p[i], prime.get(p[i])+1)
        else
            prime.set(p[i],1)
    }
    var product = 1, d = 1;
 
    // Iterate over the prime
    // divisors
    prime.forEach((value, key) => {
         
 
        var val
            = power(key,
                    (value) * (value + 1) / 2,
                    MOD);
 
        // Update the product
        product = (power(product, value + 1, MOD)
                   * power(val, d, MOD))
                  % MOD;
 
        // Update the count of divisors
        d = (d * (value + 1)) % (MOD - 1);
    });
 
    return product;
}
 
// Driver Code
var arr = [11, 11];
var n = arr.length;
document.write( productOfDivisors(arr,n));
 
 
 
</script>


Output: 

1331

 

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments