Friday, October 10, 2025
HomeData Modelling & AIProduct of all the elements in an array divisible by a given...

Product of all the elements in an array divisible by a given number K

Given an array containing N elements and a number K. The task is to find the product of all such elements of the array which are divisible by K.

Examples:  

Input : arr[] = {15, 16, 10, 9, 6, 7, 17}
        K = 3
Output : 810

Input : arr[] = {5, 3, 6, 8, 4, 1, 2, 9}
        K = 2
Output : 384 

The idea is to traverse the array and check the elements one by one. If an element is divisible by K then multiply that element’s value with the product so far and continue this process while the end of the array is reached.

Below is the implementation of the above approach:  

C++




// C++ program to find Product of all the elements
// in an array divisible by a given number K
 
#include <iostream>
using namespace std;
 
// Function to find Product of all the elements
// in an array divisible by a given number K
int findProduct(int arr[], int n, int k)
{
    int prod = 1;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }
 
    // Return calculated product
    return prod;
}
 
// Driver code
int main()
{
    int arr[] = { 15, 16, 10, 9, 6, 7, 17 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
 
    cout << findProduct(arr, n, k);
 
    return 0;
}


C




// C program to find Product of all the elements
// in an array divisible by a given number K
#include <stdio.h>
 
// Function to find Product of all the elements
// in an array divisible by a given number K
int findProduct(int arr[], int n, int k)
{
    int prod = 1;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }
 
    // Return calculated product
    return prod;
}
 
// Driver code
int main()
{
    int arr[] = { 15, 16, 10, 9, 6, 7, 17 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
    printf("%d",findProduct(arr, n, k));
 
    return 0;
}
 
// This code is contributed by kothavvsaakash.


Java




// Java program to find Product of all the elements
// in an array divisible by a given number K
 
import java.io.*;
 
class GFG {
 
// Function to find Product of all the elements
// in an array divisible by a given number K
static int findProduct(int arr[], int n, int k)
{
    int prod = 1;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }
 
    // Return calculated product
    return prod;
}
 
// Driver code
    public static void main (String[] args) {
        int arr[] = { 15, 16, 10, 9, 6, 7, 17 };
    int n = arr.length;
    int k = 3;
 
    System.out.println(findProduct(arr, n, k));
    }
}
 
 
// This code is contributed by inder_verma..


Python3




# Python3 program to find Product of all
# the elements in an array divisible by
# a given number K
 
# Function to find Product of all the elements
# in an array divisible by a given number K
def findProduct(arr, n, k):
 
    prod = 1
 
    # Traverse the array
    for i in range(n):
 
        # If current element is divisible
        # by k, multiply with product so far
        if (arr[i] % k == 0):
            prod *= arr[i]
 
    # Return calculated product
    return prod
 
# Driver code
if __name__ == "__main__":
 
    arr= [15, 16, 10, 9, 6, 7, 17 ]
    n = len(arr)
    k = 3
 
    print (findProduct(arr, n, k))
 
# This code is contributed by ita_c


C#




// C# program to find Product of all
// the elements in an array divisible
// by a given number K
using System;
 
class GFG
{
 
// Function to find Product of all
// the elements in an array divisible
// by a given number K
static int findProduct(int []arr, int n, int k)
{
    int prod = 1;
 
    // Traverse the array
    for (int i = 0; i < n; i++)
    {
 
        // If current element is divisible
        // by k multiply with product so far
        if (arr[i] % k == 0)
        {
            prod *= arr[i];
        }
    }
 
    // Return calculated product
    return prod;
}
 
// Driver code
public static void Main()
{
    int []arr = { 15, 16, 10, 9, 6, 7, 17 };
    int n = arr.Length;
    int k = 3;
     
    Console.WriteLine(findProduct(arr, n, k));
}
}
 
// This code is contributed by inder_verma


PHP




<?php
// PHP program to find Product of
// all the elements in an array
// divisible by a given number K
 
// Function to find Product of
// all the elements in an array
// divisible by a given number K
function findProduct(&$arr, $n, $k)
{
    $prod = 1;
 
    // Traverse the array
    for ($i = 0; $i < $n; $i++)
    {
 
        // If current element is divisible 
        // by k multiply with product so far
        if ($arr[$i] % $k == 0)
        {
            $prod *= $arr[$i];
        }
    }
 
    // Return calculated product
    return $prod;
}
 
// Driver code
$arr = array(15, 16, 10, 9, 6, 7, 17 );
$n = sizeof($arr);
$k = 3;
 
echo (findProduct($arr, $n, $k));
 
// This code is contributed
// by Shivi_Aggarwal
?>


Javascript




<script>
// Function to find Product of all the elements
// in an array divisible by a given number K
function findProduct( arr, n,  k)
{
    var prod = 1;
 
    // Traverse the array
    for (var i = 0; i < n; i++) {
 
        // If current element is divisible by k
        // multiply with product so far
        if (arr[i] % k == 0) {
            prod *= arr[i];
        }
    }
 
    // Return calculated product
    return prod;
}
 
var arr = [15, 16, 10, 9, 6, 7, 17 ];
     
 
    document.write(findProduct(arr, 7, 3));
 
 
 
</script>


Output

810

Complexity Analysis:

  • Time Complexity: O(N), where N is the number of elements in the array.
    Auxiliary Space: O(1) 
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32348 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6791 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS