Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIProduct of all Subsequences of size K except the minimum and maximum...

Product of all Subsequences of size K except the minimum and maximum Elements

Given an array A[] containing N elements and an integer K. The task is to calculate the product of all elements of subsequences of size K except the minimum and the maximum elements for each subsequence. 
Note: Since the answer can be very large so print the final answer as mod of 109 + 7.

Examples:  

Input : arr[] = {1, 2, 3 4}, K = 3
Output : 36
Subsequences of length 3 are:
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}
Excluding minimum and maximum elements from 
each of the above subsequences, product will be:
(2 * 2 * 3 * 3) = 36.

Input : arr[] = {10, 5, 16, 6}, k=3
Output : 3600 

Naive Approach: A simple approach is to generate all possible subsequences one by one and multiply all elements except maximum and minimum and further multiplying all of them. Since there will be a total of (n)C(K) subsequences all having K – 2 elements to be multiplied which is tedious work to do.

Efficient Approach: The idea is to first sort the array since it doesn’t matter if we consider subsequences or subsets.
Now count the occurrence of each element one by one.
In total, a number can occur in (n-1)C(K-1) subsequences out of which (i)C(K-1) times it will occur as maximum element and (n-i-1)C(K-1) times it will occur as a minimum element of that subsequence.
Hence, in total i^{th}   element will occur: 
 

(n-1)C(K-1)  - (i)C(K-1) - (n-i-1)C(K-1) times. (let's say it x)

So, at first we’ll be calculating x for each element a[i] and then multiply a[i] x times. i.e (a[i]^x mod(10^9 + 7)    ).
Since, It’s too difficult to calculate this for large arrays, so we’ll use Fermat’s Little Theorem

Below is the implementation of the above approach: 

C++




// C++ program to find product of all
// Subsequences of size K except the
// minimum and maximum Elements
 
#include <bits/stdc++.h>
using namespace std;
#define MOD 1000000007
 
#define ll long long
 
#define max 101
 
// 2D array to store value of
// combinations nCr
ll C[max - 1][max - 1];
 
ll power(ll x, unsigned ll y)
{
    unsigned ll res = 1;
    x = x % MOD;
    while (y > 0) {
        if (y & 1) {
            res = (res * x) % MOD;
        }
 
        y = y >> 1;
        x = (x * x) % MOD;
    }
    return res % MOD;
}
 
// Function to pre-calculate value of all
// combinations nCr
void combi(int n, int k)
{
    int i, j;
 
    for (i = 0; i <= n; i++) {
        for (j = 0; j <= min(i, k); j++) {
            if (j == 0 || j == i)
                C[i][j] = 1;
            else
                C[i][j] = (C[i - 1][j - 1] % MOD
                            + C[i - 1][j] % MOD) % MOD;
        }
    }
}
 
// Function to calculate product of all subsequences
// except the minimum and maximum elements
unsigned ll product(ll a[], int n, int k)
{
    unsigned ll ans = 1;
 
    // Sorting array so that it becomes easy
    // to calculate the number of times an
    // element will come in first or last place
    sort(a, a + n);
     
    // An element will occur 'powa' times in total
    // of which 'powla' times it will be last element
    // and 'powfa' times it will be first element
    ll powa = C[n - 1][k - 1];
 
    for (int i = 0; i < n; i++) {
        ll powla = C[i][k - 1];
        ll powfa = C[n - i - 1][k - 1];
         
        // In total it will come
        // powe = powa-powla-powfa times
        ll powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD;
         
        // Multiplying a[i] powe times using
        // Fermat Little Theorem under MODulo
        // MOD for fast exponentiation
        unsigned ll mul = power(a[i], powe) % MOD;
        ans = ((ans % MOD) * (mul % MOD)) % MOD;
    }
     
    return ans % MOD;
}
 
// Driver Code
int main()
{
    // pre-calculation of all combinations
    combi(100, 100);
 
    ll arr[] = { 1, 2, 3, 4 };
    int n = sizeof(arr) / sizeof arr[0];
    int k = 3;
 
    unsigned ll ans = product(arr, n, k);
     
    cout << ans << endl;
 
    return 0;
}


Java




// Java program to find product of all
// Subsequences of size K except the
// minimum and maximum Elements
import java.util.Arrays;
 
class GFG
{
     
static int MOD= 1000000007;
static int max =101;
 
// 2D array to store value of
// combinations nCr
static long C[][] = new long[max ][max];
 
static long power(long x, long y)
{
    long res = 1;
    x = x % MOD;
    while (y > 0)
    {
        if (y % 2== 1)
        {
            res = (res * x) % MOD;
        }
 
        y = y >> 1;
        x = (x * x) % MOD;
    }
    return res % MOD;
}
 
// Function to pre-calculate value of all
// combinations nCr
static void combi(int n, int k)
{
    int i, j;
 
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= Math.min(i, k); j++)
        {
            if (j == 0 || j == i)
                C[i][j] = 1;
            else
                C[i][j] = (C[i - 1][j - 1] % MOD
                            + C[i - 1][j] % MOD) % MOD;
        }
    }
}
 
// Function to calculate product of all subsequences
// except the minimum and maximum elements
static long product(long a[], int n, int k)
{
    long ans = 1;
 
    // Sorting array so that it becomes easy
    // to calculate the number of times an
    // element will come in first or last place
    Arrays.sort(a);
     
    // An element will occur 'powa' times in total
    // of which 'powla' times it will be last element
    // and 'powfa' times it will be first element
    long powa = C[n - 1][k - 1];
 
    for (int i = 0; i < n; i++)
    {
        long powla = C[i][k - 1];
        long powfa = C[n - i - 1][k - 1];
         
        // In total it will come
        // powe = powa-powla-powfa times
        long powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD;
         
        // Multiplying a[i] powe times using
        // Fermat Little Theorem under MODulo
        // MOD for fast exponentiation
        long mul = power(a[i], powe) % MOD;
        ans = ((ans % MOD) * (mul % MOD)) % MOD;
    }
     
    return ans % MOD;
}
 
// Driver Code
public static void main(String[] args)
{
    // pre-calculation of all combinations
    combi(100, 100);
 
    long arr[] = { 1, 2, 3, 4 };
    int n = arr.length;
    int k = 3;
 
    long ans = product(arr, n, k);
     
    System.out.println(ans);
}
}
 
/* This code contributed by PrinciRaj1992 */


Python3




# Python 3 program to find product of all
# Subsequences of size K except the
# minimum and maximum Elements
 
MOD = 1000000007
 
max = 101
 
# 2D array to store value of
# combinations nCr
C = [[0 for i in range(max)] for j in range(max)]
 
def power(x,y):
    res = 1
    x = x % MOD
    while (y > 0):
        if (y & 1):
            res = (res * x) % MOD
 
        y = y >> 1
        x = (x * x) % MOD
 
    return res % MOD
 
# Function to pre-calculate value of all
# combinations nCr
def combi(n, k):
    for i in range(n + 1):
        for j in range(min(i, k) + 1):
            if (j == 0 or j == i):
                C[i][j] = 1
            else:
                C[i][j] = (C[i - 1][j - 1] % MOD +
                            C[i - 1][j] % MOD) % MOD
 
# Function to calculate product of all subsequences
# except the minimum and maximum elements
def product(a, n, k):
    ans = 1
 
    # Sorting array so that it becomes easy
    # to calculate the number of times an
    # element will come in first or last place
    a.sort(reverse = False)
     
    # An element will occur 'powa' times in total
    # of which 'powla' times it will be last element
    # and 'powfa' times it will be first element
    powa = C[n - 1][k - 1]
 
    for i in range(n):
        powla = C[i][k - 1]
        powfa = C[n - i - 1][k - 1]
         
        # In total it will come
        # powe = powa-powla-powfa times
        powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD
         
        # Multiplying a[i] powe times using
        # Fermat Little Theorem under MODulo
        # MOD for fast exponentiation
        mul = power(a[i], powe) % MOD
        ans = ((ans % MOD) * (mul % MOD)) % MOD
     
    return ans % MOD
 
# Driver Code
if __name__ == '__main__':
    # pre-calculation of all combinations
    combi(100, 100)
 
    arr = [1, 2, 3, 4]
    n = len(arr)
    k = 3
 
    ans = product(arr, n, k)
    print(ans)
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find product of all
// Subsequences of size K except the
// minimum and maximum Elements
using System;
 
class GFG
{
static int MOD = 1000000007;
static int max = 101;
 
// 2D array to store value of
// combinations nCr
static long [,]C = new long[max, max];
 
static long power(long x, long y)
{
    long res = 1;
    x = x % MOD;
    while (y > 0)
    {
        if (y % 2 == 1)
        {
            res = (res * x) % MOD;
        }
 
        y = y >> 1;
        x = (x * x) % MOD;
    }
    return res % MOD;
}
 
// Function to pre-calculate value
// of all combinations nCr
static void combi(int n, int k)
{
    int i, j;
 
    for (i = 0; i <= n; i++)
    {
        for (j = 0;
             j <= Math.Min(i, k); j++)
        {
            if (j == 0 || j == i)
                C[i, j] = 1;
            else
                C[i, j] = (C[i - 1, j - 1] % MOD +
                           C[i - 1, j] % MOD) % MOD;
        }
    }
}
 
// Function to calculate product of
// all subsequences except
// the minimum and maximum elements
static long product(long []a, int n, int k)
{
    long ans = 1;
 
    // Sorting array so that it becomes easy
    // to calculate the number of times an
    // element will come in first or last place
    Array.Sort(a);
     
    // An element will occur 'powa' times
    // in total of which 'powla' times it
    // will be last element and 'powfa' times
    // it will be first element
    long powa = C[n - 1, k - 1];
 
    for (int i = 0; i < n; i++)
    {
        long powla = C[i, k - 1];
        long powfa = C[n - i - 1, k - 1];
         
        // In total it will come
        // powe = powa-powla-powfa times
        long powe = ((powa % MOD) -    
                     (powla + powfa) %
                      MOD + MOD) % MOD;
         
        // Multiplying a[i] powe times using
        // Fermat Little Theorem under MODulo
        // MOD for fast exponentiation
        long mul = power(a[i], powe) % MOD;
        ans = ((ans % MOD) *
               (mul % MOD)) % MOD;
    }
     
    return ans % MOD;
}
 
// Driver Code
static public void Main ()
{
    // pre-calculation of all combinations
    combi(100, 100);
 
    long []arr = { 1, 2, 3, 4 };
    int n = arr.Length;
    int k = 3;
 
    long ans = product(arr, n, k);
     
    Console.WriteLine(ans);
}
}
 
// This code contributed by ajit


Javascript




<script>
    // Javascript program to find product of all
    // Subsequences of size K except the
    // minimum and maximum Elements
     
    let MOD= 1000000007;
    let max =101;
 
    // 2D array to store value of
    // combinations nCr
    let C = new Array(max);
     
    for(let i = 0; i < max; i++)
    {
        C[i] = new Array(max);
        for(let j = 0; j < max; j++)
        {
            C[i][j] = 0;
        }
    }
 
    function power(x, y)
    {
        let res = 1;
        x = x % MOD;
        while (y > 0)
        {
            if (y % 2== 1)
            {
                res = (res * x) % MOD;
            }
 
            y = y >> 1;
            x = (x * x) % MOD;
        }
        return res % MOD;
    }
 
    // Function to pre-calculate value of all
    // combinations nCr
    function combi(n, k)
    {
        let i, j;
 
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= Math.min(i, k); j++)
            {
                if (j == 0 || j == i)
                    C[i][j] = 1;
                else
                    C[i][j] = (C[i - 1][j - 1] % MOD
                                + C[i - 1][j] % MOD) % MOD;
            }
        }
    }
 
    // Function to calculate product of all subsequences
    // except the minimum and maximum elements
    function product(a, n, k)
    {
        let ans = 1;
 
        // Sorting array so that it becomes easy
        // to calculate the number of times an
        // element will come in first or last place
        a.sort(function(a, b){return a - b});
 
        // An element will occur 'powa' times in total
        // of which 'powla' times it will be last element
        // and 'powfa' times it will be first element
        let powa = C[n - 1][k - 1];
 
        for (let i = 0; i < n; i++)
        {
            let powla = C[i][k - 1];
            let powfa = C[n - i - 1][k - 1];
 
            // In total it will come
            // powe = powa-powla-powfa times
            let powe = ((powa % MOD) - (powla + powfa) % MOD + MOD) % MOD;
 
            // Multiplying a[i] powe times using
            // Fermat Little Theorem under MODulo
            // MOD for fast exponentiation
            let mul = power(a[i], powe) % MOD;
            ans = ((ans % MOD) * (mul % MOD)) % MOD;
        }
 
        return ans % MOD;
    }
     
    // pre-calculation of all combinations
    combi(100, 100);
   
    let arr = [ 1, 2, 3, 4 ];
    let n = arr.length;
    let k = 3;
   
    let ans = product(arr, n, k);
       
    document.write(ans);
 
</script>


Output: 

36

 

Time Complexity: O(nlogn + max*max), where n is the size of the given array and max is the defined constant.

Auxiliary Space: O(max*max), where max is the defined constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments