Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIReverse a Linked List in groups of given size (Iterative Approach)

Reverse a Linked List in groups of given size (Iterative Approach)

Given a linked list and an integer K, the task is to reverse every K nodes of the given linked list.

Examples: 

Input: 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> NULL, K = 3 
Output: 3 2 1 6 5 4 8 7

Input: 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> NULL, K = 5 
Output: 5 4 3 2 1 8 7 6 
 

Approach: We have already discussed a recursive solution in the posts Set 1 and Set 2. In this post, we will discuss an iterative solution to the above problem. Unlike the above solutions, we do not use any form of the stack to implement our solution. We reverse the first k nodes of the linked list. While reversing, we keep track of the first and last node of the k-reversed linked list using the join and tail pointer. After reversing the k nodes of the linked list, we join the nodes pointed by the tail pointer and join pointer and update them. We repeat this process until all groups of nodes are reversed.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Link list node
struct Node {
    int data;
    struct Node* next;
};
 
/* Function to reverse the linked list in groups of
size k and return the pointer to the new head node. */
Node* reverse(struct Node* head, int k)
{
    Node* prev = NULL;
    Node* curr = head;
    Node* temp = NULL;
    Node* tail = NULL;
    Node* newHead = NULL;
    Node* join = NULL;
    int t = 0;
 
    // Traverse till the end of the linked list
    while (curr) {
        t = k;
        join = curr;
        prev = NULL;
 
        // Reverse group of k nodes of the linked list
        while (curr && t--) {
            temp = curr->next;
            curr->next = prev;
            prev = curr;
            curr = temp;
        }
 
        // Sets the new head of the input list
        if (!newHead)
            newHead = prev;
 
        /* Tail pointer keeps track of the last node
        of the k-reversed linked list. We join the
        tail pointer with the head of the next
        k-reversed linked list's head */
        if (tail)
            tail->next = prev;
 
        /* The tail is then updated to the last node
        of the next k-reverse linked list */
        tail = join;
    }
 
    /* newHead is new head of the input list */
    return newHead;
}
 
// Function to insert a node at
// the head of the linked list
void push(Node** head_ref, int new_data)
{
    /* allocate node */
    Node* new_node = new Node();
 
    /* put in the data */
    new_node->data = new_data;
 
    /* link the old list of the new node */
    new_node->next = (*head_ref);
 
    /* move the head to point to the new node */
    (*head_ref) = new_node;
}
 
// Function to print the linked list
void printList(Node* node)
{
    while (node != NULL) {
        cout << node->data << " ";
        node = node->next;
    }
}
 
// Driver code
int main()
{
 
    // Start with the empty list
    Node* head = NULL;
 
    // Created Linked list is
    // 1->2->3->4->5->6->7->8->9
    push(&head, 9);
    push(&head, 8);
    push(&head, 7);
    push(&head, 6);
    push(&head, 5);
    push(&head, 4);
    push(&head, 3);
    push(&head, 2);
    push(&head, 1);
 
    int k = 3;
 
    cout << "Given linked list \n";
    printList(head);
    head = reverse(head, k);
 
    cout << "\nReversed Linked list \n";
    printList(head);
 
    return (0);
}


Java




// Java implementation of the approach
class GFG
{
     
// Link list node
static class Node
{
    int data;
    Node next;
};
 
// Function to reverse the linked list in groups of
//size k and return the pointer to the new head node. /
static Node reverse( Node head, int k)
{
    Node prev = null;
    Node curr = head;
    Node temp = null;
    Node tail = null;
    Node newHead = null;
    Node join = null;
    int t = 0;
 
    // Traverse till the end of the linked list
    while (curr != null)
    {
        t = k;
        join = curr;
        prev = null;
 
        // Reverse group of k nodes of the linked list
        while (curr != null && t-- != 0)
        {
            temp = curr.next;
            curr.next = prev;
            prev = curr;
            curr = temp;
        }
 
        // Sets the new head of the input list
        if ((newHead == null))
            newHead = prev;
 
        /* Tail pointer keeps track of the last node
        of the k-reversed linked list. We join the
        tail pointer with the head of the next
        k-reversed linked list's head */
        if (tail != null)
            tail.next = prev;
 
        /* The tail is then updated to the last node
        of the next k-reverse linked list */
        tail = join;
    }
 
    // newHead is new head of the input list /
    return newHead;
}
 
// Function to insert a node at
// the head of the linked list
static Node push(Node head_ref, int new_data)
{
    // allocate node /
    Node new_node = new Node();
 
    // put in the data /
    new_node.data = new_data;
 
    // link the old list of the new node /
    new_node.next = (head_ref);
 
    // move the head to point to the new node /
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to print the linked list
static void printList(Node node)
{
    while (node != null)
    {
        System.out.print( node.data + " ");
        node = node.next;
    }
}
 
// Driver code
public static void main(String args[])
{
 
    // Start with the empty list
    Node head = null;
 
    // Created Linked list is
    // 1.2.3.4.5.6.7.8.9
    head = push(head, 9);
    head = push(head, 8);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 5);
    head = push(head, 4);
    head = push(head, 3);
    head = push(head, 2);
    head = push(head, 1);
 
    int k = 3;
 
    System.out.print( "Given linked list \n");
    printList(head);
    head = reverse(head, k);
 
    System.out.print( "\nReversed Linked list \n");
    printList(head);
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python3 implementation of the approach
import math
 
# Link list node
class Node:
    def __init__(self, data):
        self.data = data
        self.next = None
 
# Function to reverse the linked list in groups of
#size k and return the pointer to the new head node.
def reverse(head, k) :
    prev = None
    curr = head
    temp = None
    tail = None
    newHead = None
    join = None
    t = 0
 
    # Traverse till the end of the linked list
    while (curr) :
        t = k
        join = curr
        prev = None
 
        # Reverse group of k nodes of the linked list
        while (curr and t > 0):
            temp = curr.next
            curr.next = prev
            prev = curr
            curr = temp
            t = t - 1
 
        # Sets the new head of the input list
        if (newHead == None):
            newHead = prev
 
        # Tail pointer keeps track of the last node
        # of the k-reversed linked list. We join the
        # tail pointer with the head of the next
        # k-reversed linked list's head
        if (tail != None):
            tail.next = prev
 
        # The tail is then updated to the last node
        # of the next k-reverse linked list
        tail = join
     
    # newHead is new head of the input list */
    return newHead
 
# Function to insert a node at
# the head of the linked list
def push(head_ref, new_data) :
     
    # allocate node */
    new_node =Node(new_data)
 
    # put in the data */
    new_node.data = new_data
 
    # link the old list of the new node */
    new_node.next = head_ref
 
    # move the head to point to the new node */
    head_ref = new_node
    return head_ref
 
# Function to print the linked list
def printList(node):
    while (node != None) :
        print(node.data, end = " ")
        node = node.next
     
# Driver code
if __name__=='__main__':
 
    # Start with the empty list
    head = None
 
    # Created Linked list is
    # 1.2.3.4.5.6.7.8.9
    head = push(head, 9)
    head = push(head, 8)
    head = push(head, 7)
    head = push(head, 6)
    head = push(head, 5)
    head = push(head, 4)
    head = push(head, 3)
    head = push(head, 2)
    head = push(head, 1)
 
    k = 3
 
    print("Given linked list ")
    printList(head)
    head = reverse(head, k)
 
    print("\nReversed Linked list ")
    printList(head)
 
# This code is contributed by Srathore


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Link list node
public class Node
{
    public int data;
    public Node next;
};
 
// Function to reverse the linked list in groups of
//size k and return the pointer to the new head node. /
static Node reverse( Node head, int k)
{
    Node prev = null;
    Node curr = head;
    Node temp = null;
    Node tail = null;
    Node newHead = null;
    Node join = null;
    int t = 0;
 
    // Traverse till the end of the linked list
    while (curr != null)
    {
        t = k;
        join = curr;
        prev = null;
 
        // Reverse group of k nodes of the linked list
        while (curr != null && t-- != 0)
        {
            temp = curr.next;
            curr.next = prev;
            prev = curr;
            curr = temp;
        }
 
        // Sets the new head of the input list
        if ((newHead == null))
            newHead = prev;
 
        /* Tail pointer keeps track of the last node
        of the k-reversed linked list. We join the
        tail pointer with the head of the next
        k-reversed linked list's head */
        if (tail != null)
            tail.next = prev;
 
        /* The tail is then updated to the last node
        of the next k-reverse linked list */
        tail = join;
    }
 
    // newHead is new head of the input list /
    return newHead;
}
 
// Function to insert a node at
// the head of the linked list
static Node push(Node head_ref, int new_data)
{
    // allocate node /
    Node new_node = new Node();
 
    // put in the data /
    new_node.data = new_data;
 
    // link the old list of the new node /
    new_node.next = (head_ref);
 
    // move the head to point to the new node /
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to print the linked list
static void printList(Node node)
{
    while (node != null)
    {
        Console.Write( node.data + " ");
        node = node.next;
    }
}
 
// Driver code
public static void Main(String []args)
{
 
    // Start with the empty list
    Node head = null;
 
    // Created Linked list is
    // 1.2.3.4.5.6.7.8.9
    head = push(head, 9);
    head = push(head, 8);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 5);
    head = push(head, 4);
    head = push(head, 3);
    head = push(head, 2);
    head = push(head, 1);
 
    int k = 3;
 
    Console.Write( "Given linked list \n");
    printList(head);
    head = reverse(head, k);
 
    Console.Write( "\nReversed Linked list \n");
    printList(head);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
// Link list node
class Node
{
    constructor()
    {
        this.data = 0;
        this.next = null;
    }
};
 
// Function to reverse the linked list
// in groups of size k and return the
// pointer to the new head node.
function reverse(head, k)
{
    var prev = null;
    var curr = head;
    var temp = null;
    var tail = null;
    var newHead = null;
    var join = null;
    var t = 0;
 
    // Traverse till the end of the linked list
    while (curr != null)
    {
        t = k;
        join = curr;
        prev = null;
 
        // Reverse group of k nodes of the linked list
        while (curr != null && t-- != 0)
        {
            temp = curr.next;
            curr.next = prev;
            prev = curr;
            curr = temp;
        }
 
        // Sets the new head of the input list
        if ((newHead == null))
            newHead = prev;
 
        /* Tail pointer keeps track of the last node
        of the k-reversed linked list. We join the
        tail pointer with the head of the next
        k-reversed linked list's head */
        if (tail != null)
            tail.next = prev;
 
        /* The tail is then updated to the last node
        of the next k-reverse linked list */
        tail = join;
    }
     
    // newHead is new head of the input list
    return newHead;
}
 
// Function to insert a node at
// the head of the linked list
function push(head_ref, new_data)
{
     
    // Allocate node
    var new_node = new Node();
 
    // Put in the data
    new_node.data = new_data;
 
    // Link the old list of the new node
    new_node.next = (head_ref);
 
    // Move the head to point to the new node
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to print the linked list
function printList(node)
{
    while (node != null)
    {
        document.write( node.data + " ");
        node = node.next;
    }
}
 
// Driver code
 
// Start with the empty list
var head = null;
 
// Created Linked list is
// 1.2.3.4.5.6.7.8.9
head = push(head, 9);
head = push(head, 8);
head = push(head, 7);
head = push(head, 6);
head = push(head, 5);
head = push(head, 4);
head = push(head, 3);
head = push(head, 2);
head = push(head, 1);
 
var k = 3;
document.write("Given linked list <br>");
printList(head);
head = reverse(head, k);
 
document.write("<br>Reversed Linked list <br>");
printList(head);
 
// This code is contributed by itsok
 
</script>


Output: 

Given linked list 
1 2 3 4 5 6 7 8 9 
Reversed Linked list 
3 2 1 6 5 4 9 8 7

 

Time Complexity: O(n) where n is the number of nodes in the given list. 
Space Complexity: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments