Wednesday, December 25, 2024
Google search engine
HomeData Modelling & AIProblem Solving in Artificial Intelligence

Problem Solving in Artificial Intelligence

The reflex agent of AI directly maps states into action. Whenever these agents fail to operate in an environment where the state of mapping is too large and not easily performed by the agent, then the stated problem dissolves and sent to a problem-solving domain which breaks the large stored problem into the smaller storage area and resolves one by one. The final integrated action will be the desired outcomes.

On the basis of the problem and their working domain, different types of problem-solving agent defined and use at an atomic level without any internal state visible with a problem-solving algorithm. The problem-solving agent performs precisely by defining problems and several solutions. So we can say that problem solving is a part of artificial intelligence that encompasses a number of techniques such as a tree, B-tree, heuristic algorithms to solve a problem.  

We can also say that a problem-solving agent is a result-driven agent and always focuses on satisfying the goals.

There are basically three types of problem in artificial intelligence:

1. Ignorable: In which solution steps can be ignored.

2. Recoverable: In which solution steps can be undone.

3. Irrecoverable: Solution steps cannot be undo.

Steps problem-solving in AI: The problem of AI is directly associated with the nature of humans and their activities. So we need a number of finite steps to solve a problem which makes human easy works.

These are the following steps which require to solve a problem :

  • Problem definition: Detailed specification of inputs and acceptable system solutions.
  • Problem analysis: Analyse the problem thoroughly.
  • Knowledge Representation: collect detailed information about the problem and define all possible techniques.
  • Problem-solving: Selection of best techniques.

Components to formulate the associated problem: 

  • Initial State: This state requires an initial state for the problem which starts the AI agent towards a specified goal. In this state new methods also initialize problem domain solving by a specific class.
  • Action: This stage of problem formulation works with function with a specific class taken from the initial state and all possible actions done in this stage.
  • Transition: This stage of problem formulation integrates the actual action done by the previous action stage and collects the final stage to forward it to their next stage.
  • Goal test: This stage determines that the specified goal achieved by the integrated transition model or not, whenever the goal achieves stop the action and forward into the next stage to determines the cost to achieve the goal.  
  • Path costing: This component of problem-solving numerical assigned what will be the cost to achieve the goal. It requires all hardware software and human working cost.
Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!

RELATED ARTICLES

Most Popular

Recent Comments