Friday, January 10, 2025
Google search engine
HomeData Modelling & AIProbability of rain on N+1th day

Probability of rain on N+1th day

Given an array of 1 and 0’s, where Ai = 1 denotes that ith day was a rainy day and Ai = 0 denotes it was not a rainy day. The task is to find the probability that the N+1th was a rainy day. 
Examples: 
 

Input: a[] = {0, 0, 1, 0} 
Output: .25 
Since one day was rainy out of 4 days, hence the probability on 
5th day will be 0.25
Input: a[] = {1, 0, 1, 0, 1, 1, 1} 
Output: 0.71 
 

 

The probability of rain on N+1th day can be found out using the below formula:
 

Probability = number of rainy days / total number of days.

First, count the number of 1’s and then the probability will be the number of 1’s divided by N i.e. count / N.
Below is the implementation of the above approach: 
 

C++




// C++ code to find the probability of rain
// on n+1-th day when previous day's data is given
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the probability
float rainDayProbability(int a[], int n)
{
    float count = 0, m;
 
    // count 1
    for (int i = 0; i < n; i++) {
        if (a[i] == 1)
            count++;
    }
 
    // find probability
    m = count / n;
    return m;
}
 
// Driver Code
int main()
{
 
    int a[] = { 1, 0, 1, 0, 1, 1, 1, 1 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << rainDayProbability(a, n);
    return 0;
}


Java




// Java code to find the
// probability of rain
// on n+1-th day when previous
// day's data is given
import java.io.*;
import java.util.*;
 
class GFG
{
     
// Function to find
// the probability
static float rainDayProbability(int a[],
                                int n)
{
    float count = 0, m;
 
    // count 1
    for (int i = 0; i < n; i++)
    {
        if (a[i] == 1)
            count++;
    }
 
    // find probability
    m = count / n;
    return m;
}
 
// Driver Code
public static void main(String args[])
{
    int a[] = { 1, 0, 1, 0, 1, 1, 1, 1 };
    int n = a.length;
 
    System.out.print(rainDayProbability(a, n));
}
}


Python 3




# Python 3 program to find
# the probability of rain
# on n+1-th day when previous
# day's data is given
 
# Function to find the probability
def rainDayProbability(a, n) :
 
    # count occurrence of 1
    count = a.count(1)
 
    # find probability
    m = count / n
     
    return m
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 1, 0, 1, 0, 1, 1, 1, 1]
    n = len(a)
 
    # function calling
    print(rainDayProbability(a, n))
 
# This code is contributed
# by ANKITRAI1


C#




// C# code to find the
// probability of rain
// on n+1-th day when
// previous day's data
// is given
using System;
 
class GFG
{
     
// Function to find
// the probability
static float rainDayProbability(int []a,
                                int n)
{
    float count = 0, m;
 
    // count 1
    for (int i = 0; i < n; i++)
    {
        if (a[i] == 1)
            count++;
    }
 
    // find probability
    m = count / n;
    return m;
}
 
// Driver Code
public static void Main()
{
    int []a = {1, 0, 1, 0,
               1, 1, 1, 1};
    int n = a.Length;
 
    Console.WriteLine(rainDayProbability(a, n));
}
}
 
// This code is contributed
// by inder_verma.


PHP




<?php
// PHP code to find the
// probability of rain
// on n+1-th day when
// previous day's data
// is given
 
// Function to find
// the probability
function rainDayProbability($a, $n)
{
    $count = 0; $m;
 
    // count 1
    for ($i = 0; $i <$n; $i++)
    {
        if ($a[$i] == 1)
            $count++;
    }
 
    // find probability
    $m = $count / $n;
    return $m;
}
 
// Driver Code
$a = array(1, 0, 1, 0,
           1, 1, 1, 1);
$n = count($a);
 
echo rainDayProbability($a, $n);
 
// This code is contributed
// by inder_verma.
?>


Javascript




<script>
// JavaScript code to find the probability of rain
// on n+1-th day when previous day's data is given
 
// Function to find the probability
function rainDayProbability(a,n)
{
    let count = 0, m;
 
    // count 1
    for (let i = 0; i < n; i++) {
        if (a[i] == 1)
            count++;
    }
 
    // find probability
    m = count / n;
    return m;
}
 
// Driver Code
 
    let a = [1, 0, 1, 0, 1, 1, 1, 1 ];
    let n = a.length;
 
    document.write(rainDayProbability(a,n));
     
// This code contributed by Rajput-Ji
 
</script>


Output: 

0.75

 

Time Complexity: O(N)

Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments