Monday, January 13, 2025
Google search engine
HomeData Modelling & AIProbability of obtaining Prime Numbers as product of values obtained by throwing...

Probability of obtaining Prime Numbers as product of values obtained by throwing N dices

Given an integer N denoting the number of dices, the task is to find the probability of the product of numbers appearing on the top faces of N thrown dices being a prime number. All N dices must be thrown simultaneously.

Examples:

Input: N = 2 
Output: 6 / 36 
Explanation: 
On throwing N(=2) dices simultaneously, the possible outcomes on the top faces of N(=2) dices having product equal to a prime number are: {(1, 2), (1, 3), (1, 5), (2, 1), (3, 1), (5, 1)}. 
Therefore, the count of favourable outcomes = 6 and the count of the sample space is = 36 
Therefore, the required output is (6 / 36) 

Input: N = 3 
Output: 9 / 216

Naive Approach: The simplest approach to solve this problem is to generate all possible outcomes on the top faces of N dices by throwing N dices simultaneously and for each possible outcome check if the product of numbers on the top faces is a prime number or not. If found to be true then increment the counter. Finally, print the probability of getting the product of numbers on the top faces as a prime number.

Time Complexity: O(6N * N) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach the idea is to use the fact that the product of N number is a prime number only if (N – 1) numbers are 1 and a remaining number is a prime number. Following are the observations:

If the product of N numbers is a prime number then the value of (N – 1) numbers must be 1 and the remaining number must be a prime number. 
Total count of prime numbers in the range [1, 6] is 3. 
Therefore, the total number of outcomes in which the product of N numbers on the top faces as a prime number = 3 * N.
P(E) = N(E) / N(S) 
P(E) = probability of getting the product of numbers on the top faces of N dices as a prime number. 
N(E) = total count of favourable outcomes = 3 * N 
N(S) = total number of events in the sample space = 6N 
 

Follow the steps below to solve this problem:

  • Initialize a variable, say N_E to store the count of favorable outcomes.
  • Initialize a variable, say N_S to store the count of sample space.
  • Update N_E = 3 * N.
  • Update N_S = 6N.
  • Finally, print the value of (N_E / N_S).

Below is the implementation of the above approach

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
 
// Function to find the value
// of power(X, N)
long long int power(long long int x,
                    long long int N)
{
    // Stores the value
    // of (X ^ N)
    long long int res = 1;
 
    // Calculate the value of
    // power(x, N)
    while (N > 0) {
         
       // If N is odd
       if(N & 1) {
            
           //Update res
           res = (res * x);
       }
        
       //Update x
       x = (x * x);
        
       //Update N
       N = N >> 1;
        
    }
    return res;
}
 
// Function to find the probability of
// obtaining a prime number as the
// product of N thrown dices
void probablityPrimeprod(long long int N)
{
    // Stores count of favorable outcomes
    long long int N_E = 3 * N;
     
    // Stores count of sample space
    long long int N_S = power(6, N);
     
    // Print the required probability
    cout<<N_E<<" / "<<N_S;
}
 
// Driver code
int main()
{
    long long int N = 2;
    probablityPrimeprod(N);
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
// Function to find the value
// of power(X, N)
static int power(int x, int N)
{
     
    // Stores the value
    // of (X ^ N)
    int res = 1;
 
    // Calculate the value of
    // power(x, N)
    while (N > 0)
    {
         
        // If N is odd
        if (N % 2 == 1)
        {
             
            // Update res
            res = (res * x);
        }
         
        // Update x
        x = (x * x);
         
        // Update N
        N = N >> 1;
    }
    return res;
}
 
// Function to find the probability of
// obtaining a prime number as the
// product of N thrown dices
static void probablityPrimeprod(int N)
{
     
    // Stores count of favorable outcomes
    int N_E = 3 * N;
     
    // Stores count of sample space
    int N_S = power(6, N);
     
    // Print the required probability
    System.out.print(N_E + " / " + N_S);
}
 
// Driver code
public static void main(String[] args)
{
    int N = 2;
     
    probablityPrimeprod(N);
}
}
 
// This code is contributed by Amit Katiyar


Python3




# Python3 program to implement
# the above approach
 
# Function to find the value
# of power(X, N)
def power(x, N):
     
    # Stores the value
    # of (X ^ N)
    res = 1
 
    # Calculate the value of
    # power(x, N)
    while (N > 0):
 
        # If N is odd
        if (N % 2 == 1):
             
            # Update res
            res = (res * x)
 
        # Update x
        x = (x * x)
 
        # Update N
        N = N >> 1
 
    return res
 
# Function to find the probability of
# obtaining a prime number as the
# product of N thrown dices
def probablityPrimeprod(N):
     
    # Stores count of favorable outcomes
    N_E = 3 * N
 
    # Stores count of sample space
    N_S = power(6, N)
 
    # Print required probability
    print(N_E, " / ", N_S)
 
# Driver code
if __name__ == '__main__':
     
    N = 2
 
    probablityPrimeprod(N)
 
# This code is contributed by 29AjayKumar


C#




// C# program to implement
// the above approach
using System;
class GFG{
     
// Function to find the
// value of power(X, N)
static int power(int x,
                 int N)
{   
  // Stores the value
  // of (X ^ N)
  int res = 1;
 
  // Calculate the value
  // of power(x, N)
  while (N > 0)
  {
    // If N is odd
    if (N % 2 == 1)
    {
      // Update res
      res = (res * x);
    }
 
    // Update x
    x = (x * x);
 
    // Update N
    N = N >> 1;
  }
  return res;
}
 
// Function to find the probability
// of obtaining a prime number as
// the product of N thrown dices
static void probablityPrimeprod(int N)
{   
  // Stores count of favorable
  // outcomes
  int N_E = 3 * N;
 
  // Stores count of sample
  // space
  int N_S = power(6, N);
 
  // Print the required
  // probability
  Console.Write(N_E + " / " + N_S);
}
 
// Driver code
public static void Main(String[] args)
{
  int N = 2;
  probablityPrimeprod(N);
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// JavaScript program to implement the above approach
 
// Function to find the value
// of power(X, N)
function power(x, N)
{
     
    // Stores the value
    // of (X ^ N)
    let res = 1;
 
    // Calculate the value of
    // power(x, N)
    while (N > 0)
    {
         
        // If N is odd
        if (N % 2 == 1)
        {
             
            // Update res
            res = (res * x);
        }
         
        // Update x
        x = (x * x);
         
        // Update N
        N = N >> 1;
    }
    return res;
}
 
// Function to find the probability of
// obtaining a prime number as the
// product of N thrown dices
function probablityPrimeprod(N)
{
     
    // Stores count of favorable outcomes
    let N_E = 3 * N;
     
    // Stores count of sample space
    let N_S = power(6, N);
     
    // Print the required probability
    document.write(N_E + " / " + N_S);
}
 
// Driver Code
    let N = 2;
    probablityPrimeprod(N);
     
    // This code is contributed by susmitakunndugoaldanga.
 
</script>


Output: 

6 / 36

 

Time Complexity: O(log2N) 
Auxiliary Space: O( 1 )

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments