Monday, January 6, 2025
Google search engine
HomeData Modelling & AIProbability of getting more heads than tails when N biased coins are...

Probability of getting more heads than tails when N biased coins are tossed

Given an array p[] of odd length N where p[i] denotes the probability of getting a head on the ith coin. As the coins are biased, the probability of getting a head is not always equal to 0.5. The task is to find the probability of getting heads more number of times than tails.

Examples: 

Input: p[] = {0.3, 0.4, 0.7} 
Output: 0.442 
Probability for a tail = (1 – Probability for a head) 
For heads greater than tails, there are 4 possibilities: 
P({head, head, tail}) = 0.3 x 0.4 x (1 – 0.7) = 0.036 
P({tail, head, head}) = (1 – 0.3) x 0.4 x 0.7 = 0.196 
P({head, tail, head}) = 0.3 x (1 – 0.4) x 0.7= 0.126 
P({head, head, head}) = 0.3 x 0.4 x 0.7 = 0.084 
Adding the above probabilities 
0.036 + 0.196 + 0.126 + 0.084 = 0.442

Input: p[] = {0.3, 0.5, 0.2, 0.6, 0.9} 
Output: 0.495 

Naive approach: The naive approach would be creating all the 2n possibilities of heads and tails. Then calculating the probabilities for different permutations and adding them when the number of heads are greater than the number of tails just like the example explanation. This would give TLE when n is large.

Efficient approach: The idea is to use dynamic programming. Let’s assume dp[i][j] to be the probability of getting j heads with first i coins. To get j heads at the ith position, there are two possibilities:  

  1. If number of heads till (i – 1) coins is equal to j then a tail comes at ith.
  2. If number of heads till (i – 1) coins is equal to (j – 1) then a head comes at ith position

Hence, it can be broken into its subproblems as follows:  

dp[i][j] = dp[i – 1][j] * (1 – p[i]) + dp[i – 1][j – 1] * p[i]

Below is the implementation of the above approach:  

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the probability when
// number of heads is greater than the number of tails
double Probability(double p[], int n)
{
 
    // Declaring the DP table
    double dp[n + 1][n + 1];
    memset(dp, 0.0, sizeof(dp));
 
    // Base case
    dp[0][0] = 1.0;
 
    // Iterating for every coin
    for (int i = 1; i <= n; i += 1) {
 
        // j represents the numbers of heads
        for (int j = 0; j <= i; j += 1) {
 
            // If number of heads is equal to zero
            // there  is only one possibility
            if (j == 0)
                dp[i][j] = dp[i - 1][j]
                           * (1.0 - p[i]);
            else
                dp[i][j] = dp[i - 1][j]
                               * (1.0 - p[i])
                           + dp[i - 1][j - 1] * p[i];
        }
    }
 
    double ans = 0.0;
 
    // When the number of heads is greater than (n+1)/2
    // it means that heads are greater than tails as
    // no of tails + no of heads is equal to n for
    // any permutation of heads and tails
    for (int i = (n + 1) / 2; i <= n; i += 1)
        ans += dp[n][i];
 
    return ans;
}
 
// Driver Code
int main()
{
    // 1 based indexing
    double p[] = { 0.0, 0.3, 0.4, 0.7 };
 
    // Number of coins
    int n = sizeof(p) / sizeof(p[0]) - 1;
 
    // Function call
    cout << Probability(p, n);
 
    return 0;
}


Java




// Java implementation of the above approach
import java.io.*;
class GFG
{
 
// Function to return the probability when
// number of heads is greater than the number of tails
static double Probability(double p[], int n)
{
 
    // Declaring the DP table
    double [][]dp = new double[n + 1][n + 1];
 
    // Base case
    dp[0][0] = 1.0;
 
    // Iterating for every coin
    for (int i = 1; i <= n; i += 1)
    {
 
        // j represents the numbers of heads
        for (int j = 0; j <= i; j += 1)
        {
 
            // If number of heads is equal to zero
            // there  is only one possibility
            if (j == 0)
                dp[i][j] = dp[i - 1][j]
                        * (1.0 - p[i]);
            else
                dp[i][j] = dp[i - 1][j]
                            * (1.0 - p[i])
                        + dp[i - 1][j - 1] * p[i];
        }
    }
 
    double ans = 0.0;
 
    // When the number of heads is greater than (n+1)/2
    // it means that heads are greater than tails as
    // no of tails + no of heads is equal to n for
    // any permutation of heads and tails
    for (int i = (n + 1) / 2; i <= n; i += 1)
        ans += dp[n][i];
 
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    // 1 based indexing
    double p[] = { 0.0, 0.3, 0.4, 0.7 };
 
    // Number of coins
    int n = p.length - 1;
 
    // Function call
    System.out.println(Probability(p, n));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the above approach
import numpy as np
 
# Function to return the probability when
# number of heads is greater than
# the number of tails
def Probability(p, n) :
 
    # Declaring the DP table
    dp = np.zeros((n + 1, n + 1));
    for i in range(n + 1) :
        for j in range(n + 1) :
            dp[i][j] = 0.0
 
    # Base case
    dp[0][0] = 1.0;
 
    # Iterating for every coin
    for i in range(1, n + 1) :
 
        # j represents the numbers of heads
        for j in range(i + 1) :
 
            # If number of heads is equal to zero
            # there  is only one possibility
            if (j == 0) :
                dp[i][j] = dp[i - 1][j] * (1.0 - p[i]);
            else :
                dp[i][j] = (dp[i - 1][j] * (1.0 - p[i]) +
                            dp[i - 1][j - 1] * p[i]);
     
    ans = 0.0;
 
    # When the number of heads is greater than (n+1)/2
    # it means that heads are greater than tails as
    # no of tails + no of heads is equal to n for
    # any permutation of heads and tails
    for i in range((n + 1)// 2, n + 1) :
        ans += dp[n][i];
 
    return ans;
 
# Driver Code
if __name__ == "__main__" :
     
    # 1 based indexing
    p = [ 0.0, 0.3, 0.4, 0.7 ];
 
    # Number of coins
    n = len(p) - 1;
 
    # Function call
    print(Probability(p, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
// Function to return the probability when
// number of heads is greater than the number of tails
static double Probability(double []p, int n)
{
 
    // Declaring the DP table
    double [,]dp = new double[n + 1, n + 1];
 
    // Base case
    dp[0, 0] = 1.0;
 
    // Iterating for every coin
    for (int i = 1; i <= n; i += 1)
    {
 
        // j represents the numbers of heads
        for (int j = 0; j <= i; j += 1)
        {
 
            // If number of heads is equal to zero
            // there is only one possibility
            if (j == 0)
                dp[i,j] = dp[i - 1,j]
                        * (1.0 - p[i]);
            else
                dp[i,j] = dp[i - 1,j]
                            * (1.0 - p[i])
                        + dp[i - 1,j - 1] * p[i];
        }
    }
 
    double ans = 0.0;
 
    // When the number of heads is greater than (n+1)/2
    // it means that heads are greater than tails as
    // no of tails + no of heads is equal to n for
    // any permutation of heads and tails
    for (int i = (n + 1) / 2; i <= n; i += 1)
        ans += dp[n,i];
 
    return ans;
}
 
// Driver Code
static public void Main ()
{
         
    // 1 based indexing
    double []p = { 0.0, 0.3, 0.4, 0.7 };
 
    // Number of coins
    int n = p.Length - 1;
 
    // Function call
    Console.Write(Probability(p, n));
}
}
 
// This code is contributed by ajit.


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to return the probability when
// number of heads is greater than the number of tails
function Probability(p , n)
{
     
    // Declaring the DP table
    var dp = Array(n + 1).fill(0).map(
        x => Array(n + 1).fill(0));
 
    // Base case
    dp[0][0] = 1.0;
 
    // Iterating for every coin
    for(var i = 1; i <= n; i += 1)
    {
         
        // j represents the numbers of heads
        for(var j = 0; j <= i; j += 1)
        {
 
            // If number of heads is equal to zero
            // there is only one possibility
            if (j == 0)
                dp[i][j] = dp[i - 1][j] *
                           (1.0 - p[i]);
            else
                dp[i][j] = dp[i - 1][j] * (1.0 - p[i]) +
                           dp[i - 1][j - 1] * p[i];
        }
    }
 
    var ans = 0.0;
 
    // When the number of heads is greater than (n+1)/2
    // it means that heads are greater than tails as
    // no of tails + no of heads is equal to n for
    // any permutation of heads and tails
    for(var i = parseInt((n + 1) / 2); i <= n; i += 1)
        ans += dp[n][i];
 
    return ans;
}
 
// Driver Code
 
// 1 based indexing
var p = [ 0.0, 0.3, 0.4, 0.7 ];
 
// Number of coins
var n = p.length - 1;
 
// Function call
document.write(Probability(p, n));
 
// This code is contributed by Amit Katiyar
 
</script>


Output: 

0.442

 

Time complexity: O(n2), where n is the size of the given array.
Auxiliary space: O(n2) because using extra space for array dp

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments