Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPrint the string obtained after removal of outermost parentheses

Print the string obtained after removal of outermost parentheses

Given a valid parenthesis string str consisting of lowercase alphabets, opening, and closing brackets, the task is to find the string by removing the outermost enclosing brackets such that the string remains a valid parenthesis string.

Examples: 

Input: S = “(((a)(bcd)(e)))”
Output: (a)(bcd)(e)
Explanation: 
The outermost enclosing brackets are: { S[0], S[1], S[13], S[14] }. 
Removing the outermost enclosing brackets from str modifies str to “(a)(bcd)(e)”. 
Therefore, the required output is (a)(bcd)(e).

Input: str = “((ab)(bc))d”
Output: ((ab)(bc))d
Explanation: 
Since no outermost enclosing brackets present in the string. Therefore, the required output is ((ab)(bc))d

Approach:The idea is to iterate over the characters of the string and count the number of consecutive opening parenthesis and closing parenthesis from both ends of the string respectively. Then, iterate over the characters present in the inner string and count the number of opening brackets needed to balance out the string. Follow the steps below to solve the problem:

Follow the below steps to solve the problem:

  • Initialize a variable, say cnt = 0, to store the count of valid parenthesis such that str[cnt] == ‘(‘ and str[N – cnt – 1] == ‘)’.
  • To balance the inner parenthesis of the string by the outer parenthesis, traverse the substring {str[cnt], …, str[N – cnt – 1]} and count the minimum opening or closing parenthesis required to balance the inner substring say, cntMinpar.
  • Finally, update the cnt += cntMinPair and print the substring { str[cnt], …, str[N – cnt] }.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to remove outermost
// enclosing brackets from both end
void removeBrakets(string str)
{
     
    // Stores length of the string
    int n = str.length();
  
    // Stores count of parenthesis such
    // that str[cnt] == cnt[N - cnt - 1]
    int cnt = 0;
  
    // Calculating maximum number of
    // bracket pair from the end side
    while (cnt < n && str[cnt] == '(' &&
              str[n - cnt - 1] == ')')
    {
         
        // Update cnt
        cnt++;
    }
  
    // Stores minimum outer parenthesis
    // required to balance the substring
    // { str[cnt], ..., [n - cnt -1]
    int error = 0;
          
    // Stores count of unbalanced parenthesis
    // in { str[cnt], ..., [n - cnt -1]
    int open = 0;
  
    // Traverse the substring
    // { str[cnt], ..., [n - cnt -1]
    for(int i = cnt; i < n - cnt; i++)
    {
         
        // If current character is '('
        if (str[i] == '(')
        {
  
            // Update cntUnbal
            open++;
        }
  
        // Decrease num, if the current
        // character is ')'
        else if (str[i] == ')')
        {
  
            // Update cntUnbal
            if(open>0){
              open--;
            }
              else{
              error++;
            }
        }
    }
  
    int rem=cnt-error;
  
    // Print resultant string
    cout << str.substr(rem, n - 2*rem) << endl;    
}
     
// Driver Code
int main()
{
     
    // Input string
    string str = "((((a)b)(c)))";
    removeBrakets(str);
  
    return 0;
}
 
// This code is contributed by susmitakundugoaldanga


Java




// Java program to implement
// the above approach
 
import java.util.*;
import java.lang.*;
class GFG {
 
    // Function to remove outermost
    // enclosing brackets from both end
    static void removeBrakets(String str)
    {
        // Stores length of the string
        int n = str.length();
 
        // Stores count of parenthesis such
        // that str[cnt] == cnt[N - cnt - 1]
        int cnt = 0;
 
        // Calculating maximum number of
        // bracket pair from the end side
        while (cnt < n && str.charAt(cnt) == '('
               && str.charAt(n - cnt - 1) == ')') {
 
            // Update cnt
            cnt++;
        }
 
        // Stores minimum outer parenthesis
        // required to balance the substring
        // { str[cnt], ..., [n - cnt -1]
        int cntMinPar = 0;
 
        // Stores count of unbalanced parenthesis
        // in { str[cnt], ..., [n - cnt -1]
        int cntUnbal = 0;
 
        // Traverse the substring
        // { str[cnt], ..., [n - cnt -1]
        for (int i = cnt; i < n - cnt;
             i++) {
 
            // If current character is '('
            if (str.charAt(i) == '(') {
 
                // Update cntUnbal
                cntUnbal++;
            }
 
            // Decrease num, if the current
            // character is ')'
            else if (str.charAt(i) == ')') {
 
                // Update cntUnbal
                cntUnbal--;
            }
 
            // Update cntMinPar
            cntMinPar = Math.min(
                cntMinPar, cntUnbal);
        }
 
        // Update cnt
        cnt += cntMinPar;
 
        // Print resultant string
        System.out.println(
            str.substring(cnt, n - cnt));
    }
 
    // Driver Code
    public static void main(
        String[] args)
    {
        // Input string
        String str = "((((a)b)(c)))";
        removeBrakets(str);
    }
}


Python3




# Python3 program to implement
# the above approach
 
# Function to remove outermost
# enclosing brackets from both end
def removeBrakets(str):
     
    # Stores length of the string
    n = len(str)
 
    # Stores count of parenthesis such
    # that str[cnt] == cnt[N - cnt - 1]
    cnt = 0
 
    # Calculating maximum number of
    # bracket pair from the end side
    while (cnt < n and str[cnt] == '(' and
               str[n - cnt - 1] == ')'):
 
        # Update cnt
        cnt += 1
 
    # Stores minimum outer parenthesis
    # required to balance the substring
    # { str[cnt], ..., [n - cnt -1]
    cntMinPar = 0
 
    # Stores count of unbalanced parenthesis
    # in { str[cnt], ..., [n - cnt -1]
    cntUnbal = 0
 
    # Traverse the substring
    # { str[cnt], ..., [n - cnt -1]
    for i in range(cnt, n - cnt):
         
        # If current character is '('
        if (str[i] == '('):
             
            # Update cntUnbal
            cntUnbal += 1
             
        # Decrease num, if the current
        # character is ')'
        elif str[i] == ')':
             
            # Update cntUnbal
            cntUnbal -= 1
 
        # Update cntMinPar
        cntMinPar = min(cntMinPar,
                        cntUnbal)
 
    # Update cnt
    cnt += cntMinPar
 
    # Print resultant string
    print(str[cnt: n - cnt])
 
# Driver Code
if __name__ == '__main__':
     
    # Input string
    str = "((((a)b)(c)))"
     
    removeBrakets(str)
 
# This code is contributed by mohit kumar 29


C#




// C# program to implement
// the above approach
using System;
class GFG {
 
    // Function to remove outermost
    // enclosing brackets from both end
    static void removeBrakets(String str)
    {
        // Stores length of the string
        int n = str.Length;
 
        // Stores count of parenthesis such
        // that str[cnt] == cnt[N - cnt - 1]
        int cnt = 0;
 
        // Calculating maximum number of
        // bracket pair from the end side
        while (cnt < n && str[cnt] == '('
               && str[n - cnt - 1] == ')')
        {
 
            // Update cnt
            cnt++;
        }
 
        // Stores minimum outer parenthesis
        // required to balance the substring
        // { str[cnt], ..., [n - cnt -1]
        int cntMinPar = 0;
 
        // Stores count of unbalanced parenthesis
        // in { str[cnt], ..., [n - cnt -1]
        int cntUnbal = 0;
 
        // Traverse the substring
        // { str[cnt], ..., [n - cnt -1]
        for (int i = cnt; i < n - cnt;
             i++)
        {
 
            // If current character is '('
            if (str[i] == '(')
            {
 
                // Update cntUnbal
                cntUnbal++;
            }
 
            // Decrease num, if the current
            // character is ')'
            else if (str[i] == ')')
            {
 
                // Update cntUnbal
                cntUnbal--;
            }
 
            // Update cntMinPar
            cntMinPar = Math.Min(
                cntMinPar, cntUnbal);
        }
 
        // Update cnt
        cnt += cntMinPar;
 
        // Print resultant string
        Console.WriteLine(
            str.Substring(cnt, n - cnt - 2));
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        // Input string
        string str = "((((a)b)(c)))";
        removeBrakets(str);
    }
}
 
// This code is contributed by AnkThon


Javascript




<script>
 
// Javascript program to implement
// the above approach
  
// Function to remove outermost
// enclosing brackets from both end
function removeBrakets(str)
{
     
    // Stores length of the string
    var n = str.length;
  
    // Stores count of parenthesis such
    // that str[cnt] == cnt[N - cnt - 1]
    var cnt = 0;
  
    // Calculating maximum number of
    // bracket pair from the end side
    while (cnt < n && str[cnt] == '(' &&
              str[n - cnt - 1] == ')')
    {
         
        // Update cnt
        cnt++;
    }
  
    // Stores minimum outer parenthesis
    // required to balance the substring
    // { str[cnt], ..., [n - cnt -1]
    var error = 0;
          
    // Stores count of unbalanced parenthesis
    // in { str[cnt], ..., [n - cnt -1]
    var open = 0;
  
    // Traverse the substring
    // { str[cnt], ..., [n - cnt -1]
    for(var i = cnt; i < n - cnt; i++)
    {
         
        // If current character is '('
        if (str[i] == '(')
        {
  
            // Update cntUnbal
            open++;
        }
  
        // Decrease num, if the current
        // character is ')'
        else if (str[i] == ')')
        {
  
            // Update cntUnbal
            if (open > 0)
            {
              open--;
            }
            else
            {
                error++;
            }
        }
    }
    var rem = cnt - error;
  
    // Print resultant string
    document.write(str.substring(
        rem, rem + n - 2 * rem));
}
     
// Driver Code
 
// Input string
var str = "((((a)b)(c)))";
removeBrakets(str);
 
// This code is contributed by rutvik_56
 
</script>


Output: 

((a)b)(c)

 

Time Complexity: O(N)
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments