Thursday, October 9, 2025
HomeData Modelling & AIPrint the node with the maximum degree in the prufer sequence

Print the node with the maximum degree in the prufer sequence

Given a Prufer sequence of a Tree, the task is to print the node with the maximum degree in the tree whose Prufer sequence is given. In case there are many nodes with maximum degree, print the node with the smallest number. 
Examples: 
 

Input: a[] = {4, 1, 3, 4} 
Output: 4
The tree is:
2----4----3----1----5
     |
     6 

Input: a[] = {1, 2, 2} 
Output: 2

 

A simple approach is to create the tree using the Prufer sequence and then find the degree of all the nodes and then find the maximum among them.
Efficient approach: Create a degree[] array of size 2 more than the length of the Prufer sequence, since the length of prufer sequence is N – 2 if N is the number of nodes. Initially, fill the degree array with 1. Iterate in the Prufer sequence and increase the frequency in the degree table for every element. This method works because the frequency of a node in the Prufer sequence is one less than the degree in the tree. Now iterate in the degree array and find the node with the maximum frequency which will be our answer. 
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the node with
// the maximum degree in the tree
// whose Prufer sequence is given
int findMaxDegreeNode(int prufer[], int n)
{
    int nodes = n + 2;
 
    // Hash-table to mark the
    // degree of every node
    int degree[n + 2 + 1];
 
    // Initially let all the degrees be 1
    for (int i = 1; i <= nodes; i++)
        degree[i] = 1;
 
    // Increase the count of the degree
    for (int i = 0; i < n; i++)
        degree[prufer[i]]++;
 
    int maxDegree = 0;
    int node = 0;
 
    // Find the node with maximum degree
    for (int i = 1; i <= nodes; i++) {
        if (degree[i] > maxDegree) {
            maxDegree = degree[i];
            node = i;
        }
    }
 
    return node;
}
 
// Driver code
int main()
{
    int a[] = { 1, 2, 2 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << findMaxDegreeNode(a, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
         
    // Function to return the node with
    // the maximum degree in the tree
    // whose Prufer sequence is given
    static int findMaxDegreeNode(int prufer[], int n)
    {
        int nodes = n + 2;
     
        // Hash-table to mark the
        // degree of every node
        int []degree = new int[n + 2 + 1];
     
        // Initially let all the degrees be 1
        for (int i = 1; i <= nodes; i++)
            degree[i] = 1;
     
        // Increase the count of the degree
        for (int i = 0; i < n; i++)
            degree[prufer[i]]++;
     
        int maxDegree = 0;
        int node = 0;
     
        // Find the node with maximum degree
        for (int i = 1; i <= nodes; i++)
        {
            if (degree[i] > maxDegree)
            {
                maxDegree = degree[i];
                node = i;
            }
        }
     
        return node;
    }
     
    // Driver code
    public static void main (String[] args)
    {
 
        int []a = { 1, 2, 2 };
        int n = a.length;
        System.out.println(findMaxDegreeNode(a, n));
    }
}
 
// This code is contributed by ajit_00023


Python3




     
# Python implementation of the approach
 
# Function to return the node with
# the maximum degree in the tree
# whose Prufer sequence is given
def findMaxDegreeNode(prufer, n):
    nodes = n + 2;
  
    # Hash-table to mark the
    # degree of every node
    degree = [0]*(n + 2 + 1);
  
    # Initially let all the degrees be 1
    for i in range(1,nodes+1):
        degree[i] = 1;
  
    # Increase the count of the degree
    for i in range(n):
        degree[prufer[i]]+=1;
  
    maxDegree = 0;
    node = 0;
  
    # Find the node with maximum degree
    for i in range(1,nodes+1):
        if (degree[i] > maxDegree):
            maxDegree = degree[i];
            node = i;
 
    return node;
 
  
# Driver code
a = [ 1, 2, 2 ];
n = len(a);
print(findMaxDegreeNode(a, n));
 
# This code has been contributed by 29AjayKumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the node with
    // the maximum degree in the tree
    // whose Prufer sequence is given
    static int findMaxDegreeNode(int []prufer, int n)
    {
        int nodes = n + 2;
     
        // Hash-table to mark the
        // degree of every node
        int []degree = new int[n + 2 + 1];
     
        // Initially let all the degrees be 1
        for (int i = 1; i <= nodes; i++)
            degree[i] = 1;
     
        // Increase the count of the degree
        for (int i = 0; i < n; i++)
            degree[prufer[i]]++;
     
        int maxDegree = 0;
        int node = 0;
     
        // Find the node with maximum degree
        for (int i = 1; i <= nodes; i++)
        {
            if (degree[i] > maxDegree)
            {
                maxDegree = degree[i];
                node = i;
            }
        }
     
        return node;
    }
     
    // Driver code
    static public void Main ()
    {
        int []a = { 1, 2, 2 };
        int n = a.Length;
         
        Console.WriteLine(findMaxDegreeNode(a, n));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to return the node with
    // the maximum degree in the tree
    // whose Prufer sequence is given
    function findMaxDegreeNode(prufer, n)
    {
        let nodes = n + 2;
       
        // Hash-table to mark the
        // degree of every node
        let degree = new Array(n + 2 + 1);
        degree.fill(0);
       
        // Initially let all the degrees be 1
        for (let i = 1; i <= nodes; i++)
            degree[i] = 1;
       
        // Increase the count of the degree
        for (let i = 0; i < n; i++)
            degree[prufer[i]]++;
       
        let maxDegree = 0;
        let node = 0;
       
        // Find the node with maximum degree
        for (let i = 1; i <= nodes; i++)
        {
            if (degree[i] > maxDegree)
            {
                maxDegree = degree[i];
                node = i;
            }
        }
       
        return node;
    }
     
    let a = [ 1, 2, 2 ];
    let n = a.length;
    document.write(findMaxDegreeNode(a, n));
 
</script>


Output: 

2

 

Time Complexity: O(N), as we are using a loop to traverse N times. Where N is the number of elements in the array.

Auxiliary Space: O(N), as we are using extra space for the degree array. Where N is the number of elements.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32348 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6715 POSTS0 COMMENTS
Nicole Veronica
11878 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6837 POSTS0 COMMENTS
Ted Musemwa
7095 POSTS0 COMMENTS
Thapelo Manthata
6791 POSTS0 COMMENTS
Umr Jansen
6791 POSTS0 COMMENTS