Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIPrint the last k nodes of the linked list in reverse order...

Print the last k nodes of the linked list in reverse order | Recursive approach

Given a linked list containing N nodes and a positive integer k should be less than or equal to N. The task is to print the last k nodes of the list in reverse order.

Examples: 

Input: list: 1->2->3->4->5, k = 2                       
Output: 5 4

Input: list: 3->10->6->9->12->2->8, k = 4 
Output: 8 2 12 9

Source: Amazon Interview Experience SDE Off Campus.

Recursive Approach: Recursively traverse the linked list. When returning from each recursive call keep track of the node number, considering the last node as number 1, second last as number 2 and so on. This counting could be tracked with the help of a global or pointer variable. With the help of this count variable, print the nodes having a node number less than or equal to k.

Below is the implementation of the above approach: 

C++




// C++ implementation to print the last k nodes
// of linked list in reverse order
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a node
struct Node {
    int data;
    Node* next;
};
 
// Function to get a new node
Node* getNode(int data)
{
    // allocate space
    Node* newNode = new Node;
 
    // put in data
    newNode->data = data;
    newNode->next = NULL;
    return newNode;
}
 
// Function to print the last k nodes
// of linked list in reverse order
void printLastKRev(Node* head,
                     int& count, int k)
{
    // if list is empty
    if (!head)
        return;
 
    // Recursive call with the next node
    // of the list
    printLastKRev(head->next, count, k);
 
    // Count variable to keep track of
    // the last k nodes
    count++;
 
    // Print data
    if (count <= k)
        cout << head->data << " ";
}
 
// Driver code
int main()
{
    // Create list: 1->2->3->4->5
    Node* head = getNode(1);
    head->next = getNode(2);
    head->next->next = getNode(3);
    head->next->next->next = getNode(4);
    head->next->next->next->next = getNode(5);
 
    int k = 4, count = 0;
 
    // print the last k nodes
    printLastKRev(head, count, k);
 
    return 0;
}


Java




// Java implementation to print the last k nodes
// of linked list in reverse order
class GfG
{
 
// Structure of a node
static class Node
{
    int data;
    Node next;
}
 
// Function to get a new node
static Node getNode(int data)
{
    // allocate space
    Node newNode = new Node();
 
    // put in data
    newNode.data = data;
    newNode.next = null;
    return newNode;
}
 
static class C
{
    int count = 0;
}
 
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, C c, int k)
{
    // if list is empty
    if (head == null)
        return;
 
    // Recursive call with the next node
    // of the list
    printLastKRev(head.next, c, k);
 
    // Count variable to keep track of
    // the last k nodes
    c.count++;
 
    // Print data
    if (c.count <= k)
        System.out.print(head.data + " ");
}
 
// Driver code
public static void main(String[] args)
{
    // Create list: 1->2->3->4->5
    Node head = getNode(1);
    head.next = getNode(2);
    head.next.next = getNode(3);
    head.next.next.next = getNode(4);
    head.next.next.next.next = getNode(5);
 
    int k = 4;
    C c = new C();
 
    // print the last k nodes
    printLastKRev(head, c, k);
}
}
  
// This code is contributed by prerna saini


Python




# Python implementation to print the last k nodes
# of linked list in reverse order
 
# Node class
class Node:
     
    # Function to initialise the node object
    def __init__(self, data):
        self.data = data # Assign data
        self.next =None
 
# Function to get a new node
def getNode(data):
 
    # allocate space
    newNode = Node(0)
 
    # put in data
    newNode.data = data
    newNode.next = None
    return newNode
 
class C:
    def __init__(self, data):
        self.count = data
 
# Function to print the last k nodes
# of linked list in reverse order
def printLastKRev(head, c, k):
 
    # if list is empty
    if (head == None):
        return
 
    # Recursive call with the next node
    # of the list
    printLastKRev(head.next, c, k)
 
    # Count variable to keep track of
    # the last k nodes
    c.count = c.count + 1
 
    # Print data
    if (c.count <= k) :
        print(head.data, end = " ")
 
# Driver code
 
# Create list: 1->2->3->4->5
head = getNode(1)
head.next = getNode(2)
head.next.next = getNode(3)
head.next.next.next = getNode(4)
head.next.next.next.next = getNode(5)
 
k = 4
c = C(0)
 
# print the last k nodes
printLastKRev(head, c, k)
 
# This code is contributed by Arnab Kundu


C#




// C# implementation to print the last k 
// nodes of linked list in reverse order
using System;
 
class GFG
{
 
// Structure of a node
public class Node
{
    public int data;
    public Node next;
}
 
// Function to get a new node
static Node getNode(int data)
{
    // allocate space
    Node newNode = new Node();
 
    // put in data
    newNode.data = data;
    newNode.next = null;
    return newNode;
}
 
public class C
{
    public int count = 0;
}
 
// Function to print the last k nodes
// of linked list in reverse order
static void printLastKRev(Node head, C c, int k)
{
    // if list is empty
    if (head == null)
        return;
 
    // Recursive call with the next
    // node of the list
    printLastKRev(head.next, c, k);
 
    // Count variable to keep track 
    // of the last k nodes
    c.count++;
 
    // Print data
    if (c.count <= k)
        Console.Write(head.data + " ");
}
 
// Driver code
public static void Main(String []args)
{
     
    // Create list: 1->2->3->4->5
    Node head = getNode(1);
    head.next = getNode(2);
    head.next.next = getNode(3);
    head.next.next.next = getNode(4);
    head.next.next.next.next = getNode(5);
 
    int k = 4;
    C c = new C();
 
    // print the last k nodes
    printLastKRev(head, c, k);
}
}
 
// This code is contributed by Arnab Kundu


Javascript




<script>
 
// Javascript implementation of the approach
 
// Structure of a node
class Node {
        constructor() {
                this.data = 0;
                this.next = null;
             }
        }
         
         
// Function to get a new node
function getNode( data)
{
    // allocate space
    var newNode = new Node();
 
    // put in data
    newNode.data = data;
    newNode.next = null;
    return newNode;
}
 
 class C
{
constructor() {
    this.count = 0;
    }
}
 
// Function to print the last k nodes
// of linked list in reverse order
function printLastKRev( head,  c,  k)
{
    // if list is empty
    if (head == null)
        return;
 
    // Recursive call with the next node
    // of the list
    printLastKRev(head.next, c, k);
 
    // Count variable to keep track of
    // the last k nodes
    c.count++;
 
    // Print data
    if (c.count <= k)
        document.write(head.data + " ");
}
 
// Driver Code
 
// Create list: 1->2->3->4->5
var head = getNode(1);
head.next = getNode(2);
head.next.next = getNode(3);
head.next.next.next = getNode(4);
head.next.next.next.next = getNode(5);
 
let k = 4;
let c = new C();
 
// print the last k nodes
printLastKRev(head, c, k);
 
// This code is contributed by jana_sayantan.
</script>


Output

5 4 3 2 

Time Complexity: O(n).

Iterative Approach: The idea is to use Stack Data Structure

  1. Push all linked list nodes to a stack.
  2. Pop k nodes from the stack and print them.

Time Complexity: O(n).

Two Pointer Approach The idea is similar to find k-th node from end of linked list

  1. Move first pointer k nodes ahead.
  2. Now start another pointer, second from head.
  3. When first pointer reaches end, second pointer points to k-th node.
  4. Finally using the second pointer, print last k nodes.

Time Complexity: O(n).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments