Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIPrint the final string when minimum value strings get concatenated in every...

Print the final string when minimum value strings get concatenated in every operation

Given an array of strings and an array of integers where ith integer of the array corresponds to the value of the ith string present in the string array. Now pick two strings that have the smallest values in the integer array and sum up both the integers and concatenate the strings and add both the summed up integer to the integer array and the concatenated string to the string array, and keep repeating the whole process until only a single element is left in both the arrays. Also, note that once any two strings and integers are picked they get deleted from the array and new strings and integers are added back to the respective arrays. 
The task is to print the final string obtained.

Examples:  

Input: str = {“Geeks”, “For”, “Geeks”}, num = {2, 3, 7} 
Output: GeeksForGeeks 
Pick 2 and 3 add them, and form “GeeksFor” and 5 
Add them back to the arrays, str = {“GeeksFor”, “Geeks”}, num = {5, 7} 
Now pick 7 and 5 add them to form “GeeksForGeeks” which is the final string.

Input: str = {“abc”, “def”, “ghi”, “jkl”}, num = {1, 4, 2, 6} 
Output: jklabcghidef 

Approach: The idea is to use a priority queue, and make a pair of strings and their corresponding values and store them in the priority queue and keep dequeuing two pairs from the priority queue, adding the integers and concatenating the strings, and enqueuing them back into the priority queue, till the size of the queue reduces to one, and then print the only remaining string in the queue.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Class that represents a pair
struct Priority
{
    string s;
    int count;
};
 
struct Compare
{
    int operator()(Priority a, Priority b)
    {
        if (a.count > b.count)
            return 1;
        else if (a.count < b.count)
            return -1;
             
        return 0;
    }
};
 
// Function that prints the final string
static void FindString(string str[], int num[],
                                     int n)
{
    priority_queue<int, vector<Priority>, Compare> p;
     
    // Add all the strings and their corresponding
    // values to the priority queue
    for(int i = 0; i < n; i++)
    {
        Priority x;
        x.s = str[i];
        x.count = num[i];
        p.push(x);
    }
     
    // Take those two strings from the priority
    // queue whose corresponding integer values
    // are smaller and add them up as well as
    // their values and add them back to the
    // priority queue while there are more
    // than a single element in the queue
    while (p.size() > 1)
    {
         
        // Get the minimum valued string
        Priority x = p.top();
        p.pop();
        // p.remove(x);
         
        // Get the second minimum valued string
        Priority y = p.top();
        p.pop();
         
        // Updated integer value
        int temp = x.count + y.count;
        string sb = x.s + y.s;
         
        // Create new entry for the queue
        Priority z;
        z.count = temp;
        z.s = sb;
         
        // Add to the queue
        p.push(z);
    }
     
    // Print the only remaining string
    Priority z = p.top();
    p.pop();
     
    cout << z.s << endl;
}
 
// Driver code
int main()
{
    string str[] = { "Geeks", "For", "Geeks" };
    int num[] = { 2, 3, 7 };
    int n = sizeof(num) / sizeof(int);
     
    FindString(str, num, n);
}
 
// This code is contributed by sanjeev2552


Java




// Java implementation of the approach
import java.util.*;
import java.lang.*;
 
// Class that represents a pair
class Priority {
    String s;
    int count;
}
 
class PQ implements Comparator<Priority> {
    public int compare(Priority a, Priority b)
    {
        if (a.count > b.count)
            return 1;
        else if (a.count < b.count)
            return -1;
        return 0;
    }
}
 
class GFG {
 
    // Function that prints the final string
    static void FindString(String str[], int num[], int n)
    {
        Comparator<Priority> comparator = new PQ();
        PriorityQueue<Priority> p
            = new PriorityQueue<Priority>(comparator);
 
        // Add all the strings and their corresponding
        // values to the priority queue
        for (int i = 0; i < n; i++) {
            Priority x = new Priority();
            x.s = str[i];
            x.count = num[i];
            p.add(x);
        }
 
        // Take those two strings from the priority
        // queue whose corresponding integer values are smaller
        // and add them up as well as their values and
        // add them back to the priority queue
        // while there are more than a single element in the queue
        while (p.size() > 1) {
 
            // Get the minimum valued string
            Priority x = p.poll();
            p.remove(x);
 
            // Get the second minimum valued string
            Priority y = p.poll();
            p.remove(y);
 
            // Updated integer value
            int temp = x.count + y.count;
            String sb = x.s + y.s;
 
            // Create new entry for the queue
            Priority z = new Priority();
            z.count = temp;
            z.s = sb;
 
            // Add to the queue
            p.add(z);
        }
 
        // Print the only remaining string
        Priority z = p.poll();
        System.out.println(z.s);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String str[] = { "Geeks", "For", "Geeks" };
        int num[] = { 2, 3, 7 };
        int n = num.length;
 
        FindString(str, num, n);
    }
}


Python3




# Python program for the above approach
 
# Function that prints the final string
def FindString(str, num, n):
    p = []
     
    # Add all the strings and their corresponding
    # values to the priority queue
    for i in range(n):
        x = [0,0]
        x[0] = str[i]
        x[1] = num[i]
        p.append(x)
     
    # Take those two strings from the priority
    # queue whose corresponding integer values
    # are smaller and add them up as well as
    # their values and add them back to the
    # priority queue while there are more
    # than a single element in the queue
    while (len(p) > 1):
         
        # Get the minimum valued string
        x = p[-1]
        p.pop()
        # p.remove(x);
         
        # Get the second minimum valued string
        y = p[-1]
        p.pop()
         
        # Updated integer value
        temp = x[1] + y[1]
        sb = x[0] + y[0]
         
        # Create new entry for the queue
        z = [0,0]
        z[1] = temp
        z[0] = sb
         
        # Add to the queue
        p.append(z)
     
    # Print the only remaining string
    z = p[-1]
    p.pop()
     
    print(z[0])
 
# Driver code
str = ["Geeks", "For", "Geeks"]
num = [2, 3, 7]
n = len(num)
 
FindString(str, num, n);
 
# This code is contributed by shinjanpatra


Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that prints the final string
function FindString(str, num, n)
{
    var p = [];
     
    // Add all the strings and their corresponding
    // values to the priority queue
    for(var i = 0; i < n; i++)
    {
        var x = [0,0];
        x[0] = str[i];
        x[1] = num[i];
        p.push(x);
    }
     
    // Take those two strings from the priority
    // queue whose corresponding integer values
    // are smaller and add them up as well as
    // their values and add them back to the
    // priority queue while there are more
    // than a single element in the queue
    while (p.length > 1)
    {
         
        // Get the minimum valued string
        var x = p[p.length-1];
        p.pop();
        // p.remove(x);
         
        // Get the second minimum valued string
        var y = p[p.length-1];
        p.pop();
         
        // Updated integer value
        var temp = x[1] + y[1];
        var sb = x[0] + y[0];
         
        // Create new entry for the queue
        var z = [0,0];
        z[1] = temp;
        z[0] = sb;
         
        // Add to the queue
        p.push(z);
    }
     
    // Print the only remaining string
    var z = p[p.length-1];
    p.pop();
     
    document.write(z[0] + "<br>");
}
 
// Driver code
var str = ["Geeks", "For", "Geeks"];
var num = [2, 3, 7];
var n = num.length;
 
FindString(str, num, n);
 
// This code is contributed by rutvik_56.
</script>


C#




// C# program for the above approach
 
using System;
using System.Collections.Generic;
 
class Program
{
    // Function that prints the final string
    static void FindString(string[] str, int[] num, int n)
    {
        var p = new List<Tuple<string, int>>();
 
        // Add all the strings and their corresponding
        // values to the priority queue
        for (int i = 0; i < n; i++)
        {
            var x = new Tuple<string, int>(str[i], num[i]);
            p.Add(x);
        }
 
        // Take those two strings from the priority
        // queue whose corresponding integer values
        // are smaller and add them up as well as
        // their values and add them back to the
        // priority queue while there are more
        // than a single element in the queue
        while (p.Count > 1)
        {
            // Get the minimum valued string
            var x = p[p.Count - 1];
            p.RemoveAt(p.Count - 1);
 
            // Get the second minimum valued string
            var y = p[p.Count - 1];
            p.RemoveAt(p.Count - 1);
 
            // Updated integer value
            var temp = x.Item2 + y.Item2;
            var sb = x.Item1 + y.Item1;
 
            // Create new entry for the queue
            var z = new Tuple<string, int>(sb, temp);
 
            // Add to the queue
            p.Add(z);
        }
 
        // Print the only remaining string
        var z1 = p[p.Count - 1];
        p.RemoveAt(p.Count - 1);
 
        Console.WriteLine(z1.Item1);
    }
 
    // Driver code
    static void Main(string[] args)
    {
        string[] str = { "Geeks", "For", "Geeks" };
        int[] num = { 2, 3, 7 };
        int n = num.Length;
 
        FindString(str, num, n);
 
        // This code is contributed by princekumaras
    }
}


Output: 

GeeksForGeeks

 

Time Complexity: O(N * log(N))
Auxiliary Space: O(N) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments