Saturday, September 6, 2025
HomeData Modelling & AIPrint Binary Tree levels in sorted order | Set 3 (Tree given...

Print Binary Tree levels in sorted order | Set 3 (Tree given as array)

Given a Complete Binary Tree as an array, the task is to print all of its levels in sorted order.
Examples: 
 

Input: arr[] = {7, 6, 5, 4, 3, 2, 1}
The given tree looks like
            7
          /   \
        6      5
       / \    / \
      4  3   2   1
Output:
7
5 6
1 2 3 4

Input: arr[] = {5, 6, 4, 9, 2, 1}
The given tree looks like 
            5
          /   \
        6      4
       / \    /    
      9   2  1
Output: 
5
4 6
1 2 9

 

Approach: A similar problem is discussed here 
As the given tree is a Complete Binary Tree
 

No. of nodes at a level l will be 2l where l ? 0

 

  1. Start traversing the array with level initialized as 0.
  2. Sort the elements which are the part of the current level and print the elements.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print all the levels
// of the given tree in sorted order
void printSortedLevels(int arr[], int n)
{
 
    // Initialize level with 0
    int level = 0;
    for (int i = 0; i < n; level++) {
 
        // Number of nodes at current level
        int cnt = (int)pow(2, level);
 
        // Indexing of array starts from 0
        // so subtract no. of nodes by 1
        cnt -= 1;
 
        // Index of the last node in the current level
        int j = min(i + cnt, n - 1);
 
        // Sort the nodes of the current level
        sort(arr + i, arr + j + 1);
 
        // Print the sorted nodes
        while (i <= j) {
            cout << arr[i] << " ";
            i++;
        }
        cout << endl;
    }
}
 
// Driver code
int main()
{
    int arr[] = { 5, 6, 4, 9, 2, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    printSortedLevels(arr, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.Arrays;
 
class GFG
{
 
// Function to print all the levels
// of the given tree in sorted order
static void printSortedLevels(int arr[], int n)
{
 
    // Initialize level with 0
    int level = 0;
    for (int i = 0; i < n; level++)
    {
 
        // Number of nodes at current level
        int cnt = (int)Math.pow(2, level);
 
        // Indexing of array starts from 0
        // so subtract no. of nodes by 1
        cnt -= 1;
 
        // Index of the last node in the current level
        int j = Math.min(i + cnt, n - 1);
 
        // Sort the nodes of the current level
        Arrays.sort(arr, i, j+1);
 
        // Print the sorted nodes
        while (i <= j)
        {
            System.out.print(arr[i] + " ");
            i++;
        }
        System.out.println();
    }
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 5, 6, 4, 9, 2, 1 };
    int n = arr.length;
    printSortedLevels(arr, n);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
from math import pow
 
# Function to print all the levels
# of the given tree in sorted order
def printSortedLevels(arr, n):
     
    # Initialize level with 0
    level = 0
    i = 0
    while(i < n):
         
        # Number of nodes at current level
        cnt = int(pow(2, level))
 
        # Indexing of array starts from 0
        # so subtract no. of nodes by 1
        cnt -= 1
 
        # Index of the last node in the current level
        j = min(i + cnt, n - 1)
         
        # Sort the nodes of the current level
        arr = arr[:i] + sorted(arr[i:j + 1]) + \
                               arr[j + 1:]
 
        # Print the sorted nodes
        while (i <= j):
            print(arr[i], end = " ")
            i += 1
        print()
        level += 1
 
# Driver code
arr = [ 5, 6, 4, 9, 2, 1]
n = len(arr)
printSortedLevels(arr, n)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Linq;                
     
class GFG
{
 
// Function to print all the levels
// of the given tree in sorted order
static void printSortedLevels(int []arr, int n)
{
 
    // Initialize level with 0
    int level = 0;
    for (int i = 0; i < n; level++)
    {
 
        // Number of nodes at current level
        int cnt = (int)Math.Pow(2, level);
 
        // Indexing of array starts from 0
        // so subtract no. of nodes by 1
        cnt -= 1;
 
        // Index of the last node in the current level
        int j = Math.Min(i + cnt, n - 1);
 
        // Sort the nodes of the current level
        Array.Sort(arr, i, j + 1 - i);
 
        // Print the sorted nodes
        while (i <= j)
        {
            Console.Write(arr[i] + " ");
            i++;
        }
        Console.WriteLine();
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 5, 6, 4, 9, 2, 1 };
    int n = arr.Length;
    printSortedLevels(arr, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
    // JavaScript implementation of the approach
     
    // Function to sort the elements of the array
    // from index a to index b
    function partSort(arr, N, a, b)
    {
        // Variables to store start and end of the index range
        let l = Math.min(a, b);
        let r = Math.max(a, b);
   
        // Temporary array
        let temp = new Array(r - l + 1);
        temp.fill(0);
        let j = 0;
        for (let i = l; i <= r; i++) {
            temp[j] = arr[i];
            j++;
        }
   
        // Sort the temporary array
        temp.sort(function(a, b){return a - b});
   
        // Modifying original array with temporary array elements
        j = 0;
        for (let i = l; i <= r; i++) {
            arr[i] = temp[j];
            j++;
        }
    }
     
    // Function to print all the levels
    // of the given tree in sorted order
    function printSortedLevels(arr, n)
    {
 
        // Initialize level with 0
        let level = 0;
        for (let i = 0; i < n; level++)
        {
 
            // Number of nodes at current level
            let cnt = Math.pow(2, level);
 
            // Indexing of array starts from 0
            // so subtract no. of nodes by 1
            cnt -= 1;
 
            // Index of the last node in the current level
            let j = Math.min(i + cnt, n - 1);
 
            // Sort the nodes of the current level
            partSort(arr, n, i, j + 1);
 
            // Print the sorted nodes
            while (i <= j)
            {
                document.write(arr[i] + " ");
                i++;
            }
            document.write("</br>");
        }
    }
     
    let arr = [ 5, 6, 4, 9, 2, 1 ];
    let n = arr.length;
    printSortedLevels(arr, n);
     
</script>


Output: 

5 
4 6 
1 2 9

 

Time complexity: O(nlogn) where n is no of nodes in binary tree

Auxiliary space: O(1) as it is using constant space

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32270 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6639 POSTS0 COMMENTS
Nicole Veronica
11803 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11869 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7029 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS