Given an array arr[] of size N and a value K (-10^5<K<10^5), the task is to print the array rotated by K times to the right.
Examples:
Input: arr = {1, 3, 5, 7, 9}, K = 2
Output: 7 9 1 3 5
Explanation:
Rotating array 1 time right: 9, 1, 3, 5, 7
Rotating array 2 time right: 7, 9, 1, 3, 5Input: arr = {1, 2, 3, 4, 5}, K = -2
Output: 3 4 5 1 2
Explanation:
Rotating array -1 time right: 2, 3, 4, 5, 1
Rotating array -2 time right: 3, 4, 5, 1, 2
Naive Approach: The brute force approach to solve this problem is to use a temporary array to rotate the array K or -K times.
Time Complexity: O(N)
Auxiliary Space: O(N)
Efficient Approach: The given problem can be solved by breaking the problem into the following parts:
- Round up the value of K in range [0, N), using below steps:
- If K is negative, first change it into positive, find the modulo with N, and then again change it to negative
- If K is positive, just find the modulo with N
- Handle the case when K is negative. If K is negative, it means we need to rotate the array K times left, or -K times right.
- Next we can simply rotate the array K times by reversing subarrays. Below steps can be followed to solve the problem:
- Reverse all the array elements from 1 to N -1
- Reverse the array elements from 1 to K – 1
- Reverse the array elements from K to N -1
C++
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // Function to rotate the array // to the right, K times void RightRotate(vector< int >& nums, int K) { int n = nums.size(); // Case when K > N or K < -N K = K < 0 ? ((K * -1) % n) * -1 : K % n; // Case when K is negative K = K < 0 ? (n - (K * -1)) : K; // Reverse all the array elements reverse(nums.begin(), nums.end()); // Reverse the first k elements reverse(nums.begin(), nums.begin() + K); // Reverse the elements from K // till the end of the array reverse(nums.begin() + K, nums.end()); } // Driver code int main() { // Initialize the array vector< int > Array = { 1, 2, 3, 4, 5 }; // Find the size of the array int N = Array.size(); // Initialize K int K = -2; // Call the function and // print the answer RightRotate(Array, K); // Print the array after rotation for ( int i = 0; i < N; i++) { cout << Array[i] << " " ; } cout << endl; return 0; } |
Java
// Java implementation for the above approach import java.util.*; class GFG{ // Initialize the array static int [] Array = { 1 , 2 , 3 , 4 , 5 }; static void reverse( int start, int end) { // Temporary variable to store character int temp; while (start <= end) { // Swapping the first and last character temp = Array[start]; Array[start] = Array[end]; Array[end] = temp; start++; end--; } } // Function to rotate the array // to the right, K times static void RightRotate( int K) { int n = Array.length; // Case when K > N or K < -N K = K < 0 ? ((K * - 1 ) % n) * - 1 : K % n; // Case when K is negative K = K < 0 ? (n - (K * - 1 )) : K; // Reverse all the array elements reverse( 0 , n- 1 ); // Reverse the first k elements reverse( 0 , n - K); // Reverse the elements from K // till the end of the array reverse( K, n- 1 ); } // Driver code public static void main(String[] args) { // Find the size of the array int N = Array.length; // Initialize K int K = - 2 ; // Call the function and // print the answer RightRotate(K); // Print the array after rotation for ( int i = 0 ; i < N; i++) { System.out.print(Array[i]+ " " ); } System.out.println(); } } // This code is contributed by Rajput-Ji |
Python3
# Python code for the above approach # Function to rotate the array # to the right, K times def RightRotate(nums, K) : n = len (nums) # Case when K > N or K < -N K = ((K * - 1 ) % n) * - 1 if K < 0 else K % n; # Case when K is negative K = (n - (K * - 1 )) if K < 0 else K; # Reverse all the array elements nums.reverse(); # Reverse the first k elements p1 = nums[ 0 :K] p1.reverse(); # Reverse the elements from K # till the end of the array p2 = nums[K:] p2.reverse(); arr = p1 + p2 return arr; # Driver code # Initialize the array Array = [ 1 , 2 , 3 , 4 , 5 ]; # Find the size of the array N = len (Array) # Initialize K K = - 2 ; # Call the function and # print the answer Array = RightRotate(Array, K); # Print the array after rotation for i in Array: print (i, end = " " ) # This code is contributed by Saurabh jaiswal |
C#
// C# implementation for the above approach using System; public class GFG { // Initialize the array static int [] Array = { 1, 2, 3, 4, 5 }; static void reverse( int start, int end) { // Temporary variable to store character int temp; while (start <= end) { // Swapping the first and last character temp = Array[start]; Array[start] = Array[end]; Array[end] = temp; start++; end--; } } // Function to rotate the array // to the right, K times static void RightRotate( int K) { int n = Array.Length; // Case when K > N or K < -N K = K < 0 ? ((K * -1) % n) * -1 : K % n; // Case when K is negative K = K < 0 ? (n - (K * -1)) : K; // Reverse all the array elements reverse(0, n - 1); // Reverse the first k elements reverse(0, n - K); // Reverse the elements from K // till the end of the array reverse(K, n - 1); } // Driver code public static void Main(String[] args) { // Find the size of the array int N = Array.Length; // Initialize K int K = -2; // Call the function and // print the answer RightRotate(K); // Print the array after rotation for ( int i = 0; i < N; i++) { Console.Write(Array[i] + " " ); } Console.WriteLine(); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript code for the above approach // Function to rotate the array // to the right, K times function RightRotate(nums, K) { let n = nums.length; // Case when K > N or K < -N K = K < 0 ? ((K * -1) % n) * -1 : K % n; // Case when K is negative K = K < 0 ? (n - (K * -1)) : K; // Reverse all the array elements nums = nums.reverse(); // Reverse the first k elements let p1 = nums.slice(0, K) p1 = p1.reverse(); // Reverse the elements from K // till the end of the array let p2 = nums.slice(K) p2 = p2.reverse(); let arr = p1.concat(p2); return arr; } // Driver code // Initialize the array let Array = [1, 2, 3, 4, 5]; // Find the size of the array let N = Array.length; // Initialize K let K = -2; // Call the function and // print the answer Array = RightRotate(Array, K); // Print the array after rotation for (let i = 0; i < N; i++) { document.write(Array[i] + " " ); } document.write( '<br>' ) // This code is contributed by Potta Lokesh </script> |
3 4 5 1 2
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!