Sunday, January 19, 2025
Google search engine
HomeData Modelling & AIPrint all the sum pairs which occur maximum number of times

Print all the sum pairs which occur maximum number of times

Given an array arr[] of N distinct integers. The task is to find the sum of two array integers a[i] + a[j] which occurs maximum number of times. In the case of multiple answers, print all of them. 
Examples: 
 

Input: arr[] = {1, 8, 3, 11, 4, 9, 2, 7} 
Output: 
10 
12 
11 
The sum 10, 12 and 11 occur 3 times 
7 + 4 = 11, 8 + 3 = 11, 9 + 2 = 11 
1 + 9 = 10, 8 + 2 = 10, 7 + 3 = 10 
1 + 11 = 12, 8 + 4 = 12, 9 + 3 = 12 
Input: arr[] = {3, 1, 7, 11, 9, 2, 12} 
Output: 
12 
14 
10 
13 
 

 

Approach: The following steps can be followed to solve the problem: 
 

  • Iterate over every pair of elements.
  • Use a hash-table to count the number of times every sum pair occurs.
  • At the end iterate over the hash-table and find the sum pair which occurs the maximum number of times.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum pairs
// that occur the most
void findSumPairs(int a[], int n)
{
    // Hash-table
    unordered_map<int, int> mpp;
    for (int i = 0; i < n - 1; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Keep a count of sum pairs
            mpp[a[i] + a[j]]++;
        }
    }
 
    // Variables to store
    // maximum occurrence
    int occur = 0;
 
    // Iterate in the hash table
    for (auto it : mpp) {
        if (it.second > occur) {
            occur = it.second;
        }
    }
 
    // Print all sum pair which occur
    // maximum number of times
    for (auto it : mpp) {
        if (it.second == occur)
            cout << it.first << endl;
    }
}
 
// Driver code
int main()
{
    int a[] = { 1, 8, 3, 11, 4, 9, 2, 7 };
    int n = sizeof(a) / sizeof(a[0]);
    findSumPairs(a, n);
 
    return 0;
}


Java




// Java implementation of above approach
import java.util.*;
 
class GFG
{
 
// Function to find the sum pairs
// that occur the most
static void findSumPairs(int a[], int n)
{
    // Hash-table
    Map<Integer,Integer> mpp = new HashMap<>();
    for (int i = 0; i < n - 1; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
 
            // Keep a count of sum pairs
            mpp.put(a[i] + a[j],mpp.get(a[i] + a[j])==null?1:mpp.get(a[i] + a[j])+1);
        }
    }
 
    // Variables to store
    // maximum occurrence
    int occur = 0;
 
    // Iterate in the hash table
    for (Map.Entry<Integer,Integer> entry : mpp.entrySet())
    {
        if (entry.getValue() > occur)
        {
            occur = entry.getValue();
        }
    }
 
    // Print all sum pair which occur
    // maximum number of times
    for (Map.Entry<Integer,Integer> entry : mpp.entrySet())
    {
        if (entry.getValue() == occur)
            System.out.println(entry.getKey());
    }
}
 
// Driver code
public static void main(String args[])
{
    int a[] = { 1, 8, 3, 11, 4, 9, 2, 7 };
    int n = a.length;
    findSumPairs(a, n);
}
}
 
/* This code is contributed by PrinciRaj1992 */


Python3




# Python 3 implementation of the approach
 
# Function to find the sum pairs
# that occur the most
def findSumPairs(a, n):
     
    # Hash-table
    mpp = {i:0 for i in range(21)}
    for i in range(n - 1):
        for j in range(i + 1, n, 1):
             
            # Keep a count of sum pairs
            mpp[a[i] + a[j]] += 1
 
    # Variables to store
    # maximum occurrence
    occur = 0
 
    # Iterate in the hash table
    for key, value in mpp.items():
        if (value > occur):
            occur = value
 
    # Print all sum pair which occur
    # maximum number of times
    for key, value in mpp.items():
        if (value == occur):
            print(key)
 
# Driver code
if __name__ == '__main__':
    a = [1, 8, 3, 11, 4, 9, 2, 7]
    n = len(a)
    findSumPairs(a, n)
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
     
class GFG
{
 
// Function to find the sum pairs
// that occur the most
static void findSumPairs(int []a, int n)
{
    // Hash-table
    Dictionary<int,int> mpp = new Dictionary<int,int>();
    for (int i = 0; i < n - 1; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
 
            // Keep a count of sum pairs
            if(mpp.ContainsKey(a[i] + a[j]))
            {
                var val = mpp[a[i] + a[j]];
                mpp.Remove(a[i] + a[j]);
                mpp.Add(a[i] + a[j], val + 1);
            }
            else
            {
                mpp.Add(a[i] + a[j], 1);
            }
        }
    }
 
    // Variables to store
    // maximum occurrence
    int occur = 0;
 
    // Iterate in the hash table
    foreach(KeyValuePair<int, int> entry in mpp)
    {
        if (entry.Value > occur)
        {
            occur = entry.Value;
        }
    }
 
    // Print all sum pair which occur
    // maximum number of times
    foreach(KeyValuePair<int, int> entry in mpp)
    {
        if (entry.Value == occur)
            Console.WriteLine(entry.Key);
    }
}
 
// Driver code
public static void Main(String []args)
{
    int []a = { 1, 8, 3, 11, 4, 9, 2, 7 };
    int n = a.Length;
    findSumPairs(a, n);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// javascript implementation of the approach
 
// Function to find the sum pairs
// that occur the most
function findSumPairs( a, n){
    // Hash-table
    let mpp = new Map();
    for (let i = 0; i < n - 1; i++) {
        for (let j = i + 1; j < n; j++) {
          if(mpp[a[i]+a[j]])
              mpp[a[i]+a[j]]++;
           else
              mpp[a[i]+a[j]] = 1;
        }
    }
 
    // Variables to store
    // maximum occurrence
    let occur = 0;
 
    // Iterate in the hash table
    for (var it in mpp) {
        if (mpp[it] > occur) {
            occur = mpp[it];
        }
    }
 
    // Print all sum pair which occur
    // maximum number of times
    for (var it in mpp) {
        if (mpp[it] == occur)
            document.write( it ,'<br>');
    }
}
 
// Driver code
let a = [ 1, 8, 3, 11, 4, 9, 2, 7 ];
let len = a.length;
findSumPairs(a, len);
</script>


Output: 

10
12
11

 

Time Complexity: O(N*N), as we are using nested loops for traversing N*N times. Where N is the number of elements in the array.

Auxiliary Space: O(N*N), as we are using extra space for the map. Where N is the number of elements in the array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments