Given a binary tree, the task is to print all the nodes except the leftmost in every level of the tree. The root is considered at level 0, and left most node of any level is considered as a node at position 0.
Examples:
Input: 1 / \ 2 3 / \ \ 4 5 6 / \ 7 8 / \ 9 10 Output: 3 5 6 8 10 Input: 1 / \ 2 3 \ \ 4 5 Output: 3 5
Approach: To print nodes level by level, use level order traversal. The idea is based on Print level order traversal line by line. For that, traverse nodes level by level and mark leftmost flag true just before the processing of each level and mark it false just after processing of the first node at each level.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Structure of the tree node struct Node { int data; Node *left, *right; }; // Utility method to create a node struct Node* newNode( int data) { struct Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Function to print all the nodes // except the leftmost in every level // of the given binary tree // with level order traversal void excludeLeftmost(Node* root) { // Base Case if (root == NULL) return ; // Create an empty queue for level // order traversal queue<Node*> q; // Enqueue root q.push(root); while (1) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.size(); if (nodeCount == 0) break ; // Initialize leftmost as true // just before the beginning // of each level bool leftmost = true ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0) { Node* node = q.front(); // Switch leftmost flag after processing // the leftmost node if (leftmost) leftmost = !leftmost; // Print all the nodes except leftmost else cout << node->data << " " ; q.pop(); if (node->left != NULL) q.push(node->left); if (node->right != NULL) q.push(node->right); nodeCount--; } cout << "\n" ; } } // Driver code int main() { struct Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->left->right->left = newNode(8); root->left->right->right = newNode(9); root->left->right->right->right = newNode(10); excludeLeftmost(root); return 0; } |
Java
// Java implementation of the approach import java.util.*; class Sol { // Structure of the tree node static class Node { int data; Node left, right; }; // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Function to print all the nodes // except the leftmost in every level // of the given binary tree // with level order traversal static void excludeLeftmost(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order traversal Queue<Node> q = new LinkedList<Node>(); // Enqueue root q.add(root); while ( true ) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.size(); if (nodeCount == 0 ) break ; // Initialize leftmost as true // just before the beginning // of each level boolean leftmost = true ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0 ) { Node node = q.peek(); // Switch leftmost flag after processing // the leftmost node if (leftmost) leftmost = !leftmost; // Print all the nodes except leftmost else System.out.print( node.data + " " ); q.remove(); if (node.left != null ) q.add(node.left); if (node.right != null ) q.add(node.right); nodeCount--; } System.out.println(); } } // Driver code public static void main(String args[]) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.right.left = newNode( 6 ); root.right.right = newNode( 7 ); root.left.right.left = newNode( 8 ); root.left.right.right = newNode( 9 ); root.left.right.right.right = newNode( 10 ); excludeLeftmost(root); } } // This code is contributed by Arnab Kundu |
Python3
# Python implementation of the approach from collections import dequeue # Structure of the tree node class Node: def __init__( self ): self .data = 0 self .left = None self .right = None # Utility method to create a node def newNode(data: int ) - > Node: node = Node() node.data = data node.left = None node.right = None return node # Function to print all the nodes # except the leftmost in every level # of the given binary tree # with level order traversal def excludeLeftMost(root: Node): # Base Case if root is None : return # Create an empty queue for level # order traversal q = dequeue() # Enqueue root q.append(root) while 1 : # nodeCount (queue size) indicates # number of nodes at current level nodeCount = len (q) if nodeCount = = 0 : break # Initialize leftmost as true # just before the beginning # of each level leftmost = True # Dequeue all nodes of current level # and Enqueue all nodes of next level while nodeCount > 0 : node = q[ 0 ] # Switch leftmost flag after processing # the leftmost node if leftmost: leftmost = not leftmost # Print all the nodes except leftmost else : print (node.data, end = " " ) q.popleft() if node.left is not None : q.append(node.left) if node.right is not None : q.append(node.right) nodeCount - = 1 print () # Driver Code if __name__ = = "__main__" : root = Node() root = newNode( 1 ) root.left = newNode( 2 ) root.right = newNode( 3 ) root.left.left = newNode( 4 ) root.left.right = newNode( 5 ) root.right.left = newNode( 6 ) root.right.right = newNode( 7 ) root.left.right.left = newNode( 8 ) root.left.right.right = newNode( 9 ) root.left.right.right.right = newNode( 10 ) excludeLeftMost(root) # This code is contributed by # sanjeev2552 |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG { // Structure of the tree node public class Node { public int data; public Node left, right; }; // Utility method to create a node static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = node.right = null ; return (node); } // Function to print all the nodes // except the leftmost in every level // of the given binary tree // with level order traversal static void excludeLeftmost(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order traversal Queue<Node> q = new Queue<Node>(); // Enqueue root q.Enqueue(root); while ( true ) { // nodeCount (queue size) indicates // number of nodes at current level. int nodeCount = q.Count; if (nodeCount == 0) break ; // Initialize leftmost as true // just before the beginning // of each level Boolean leftmost = true ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0) { Node node = q.Peek(); // Switch leftmost flag after processing // the leftmost node if (leftmost) leftmost = !leftmost; // Print all the nodes except leftmost else Console.Write( node.data + " " ); q.Dequeue(); if (node.left != null ) q.Enqueue(node.left); if (node.right != null ) q.Enqueue(node.right); nodeCount--; } Console.WriteLine(); } } // Driver code public static void Main(String []args) { Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); root.left.right.left = newNode(8); root.left.right.right = newNode(9); root.left.right.right.right = newNode(10); excludeLeftmost(root); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript implementation of the approach // Structure of the tree node class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // Utility method to create a node function newNode(data) { let node = new Node(data); return (node); } // Function to print all the nodes // except the leftmost in every level // of the given binary tree // with level order traversal function excludeLeftmost(root) { // Base Case if (root == null ) return ; // Create an empty queue for level // order traversal let q = []; // Enqueue root q.push(root); while ( true ) { // nodeCount (queue size) indicates // number of nodes at current level. let nodeCount = q.length; if (nodeCount == 0) break ; // Initialize leftmost as true // just before the beginning // of each level let leftmost = true ; // Dequeue all nodes of current level // and Enqueue all nodes of next level while (nodeCount > 0) { let node = q[0]; // Switch leftmost flag after processing // the leftmost node if (leftmost) leftmost = !leftmost; // Print all the nodes except leftmost else document.write(node.data + " " ); q.shift(); if (node.left != null ) q.push(node.left); if (node.right != null ) q.push(node.right); nodeCount--; } document.write( "</br>" ); } } // Driver code let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); root.right.left = newNode(6); root.right.right = newNode(7); root.left.right.left = newNode(8); root.left.right.right = newNode(9); root.left.right.right.right = newNode(10); excludeLeftmost(root); // This code is contributed by divyeshrabadiya07 </script> |
3 5 6 7 9
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!