Given an array of N elements which denotes the array representation of binary heap, the task is to find the leaf nodes of this binary heap.
Examples:
Input: arr[] = {1, 2, 3, 4, 5, 6, 7} Output: 4 5 6 7 Explanation: 1 / \ 2 3 / \ / \ 4 5 6 7 Leaf nodes of the Binary Heap are: 4 5 6 7 Input: arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Output: 6 7 8 9 10 Explanation: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ / 8 9 10 Leaf Nodes of the Binary Heap are: 6 7 8 9 10
Approach: The key observation in the problem is that the every leaf node of the Binary Heap will be at the Height H or H -1, If H is the height of the Binary Heap. Therefore, the leaf nodes can be computed as follows:
- Calculate the total height of the binary heap.
- Traverse the array in reverse order and compare the height of each node to the compute height H of the Binary Heap.
- If the height of the current node is H, then add the current node to the leaf nodes.
- Otherwise, If the height of current node is H-1 and there are no child nodes, then also add the node as leaf node.
Below is the implementation of the above approach:
C++
// C++ implementation to print // the leaf nodes of a Binary Heap #include <bits/stdc++.h> using namespace std; // Function to find the height of // complete binary tree int height( int N) { return ( int ) floor (log2(N + 1)); } // Function to pr the leaf nodes void prLeafNodes(vector< int > arrlist) { for ( int i = arrlist.size() - 1; i >= -0; i--) cout << arrlist[i] << " " ; } // Function to find the leaf // nodes of binary heap void findLeafNodes( int arr[], int n) { // Calculate the height of // the complete binary tree int h = height(n); vector< int > arrlist; for ( int i = n - 1; i >= 0; i--) { if (height(i + 1) == h) arrlist.push_back(arr[i]); else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) // if the height if h-1, // then there should not // be any child nodes arrlist.push_back(arr[i]); else break ; } prLeafNodes(arrlist); } // Driver Code int main() { int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int n = sizeof (arr) / sizeof (arr[0]); findLeafNodes(arr, n); return 0; } // This code is contributed by adityamaharshi21 |
Java
// Java implementation to print // the leaf nodes of a Binary Heap import java.lang.*; import java.util.*; class GFG { // Function to calculate height // of the Binary heap with given // the count of the nodes static int height( int N) { return ( int )Math.ceil( Math.log(N + 1 ) / Math.log( 2 )) - 1 ; } // Function to find the leaf // nodes of binary heap static void findLeafNodes( int arr[], int n) { // Calculate the height of // the complete binary tree int h = height(n); ArrayList<Integer> arrlist = new ArrayList<>(); for ( int i = n - 1 ; i >= 0 ; i--) { if (height(i + 1 ) == h) { arrlist.add(arr[i]); } else if (height(i + 1 ) == h - 1 && n <= (( 2 * i) + 1 )) { // if the height if h-1, // then there should not // be any child nodes arrlist.add(arr[i]); } else { break ; } } printLeafNodes(arrlist); } // Function to print the leaf nodes static void printLeafNodes( ArrayList<Integer> arrlist) { for ( int i = arrlist.size() - 1 ; i >= 0 ; i--) { System.out.print( arrlist.get(i) + " " ); } } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }; findLeafNodes(arr, arr.length); } } |
C#
// C# implementation to print // the leaf nodes of a Binary Heap using System; using System.Collections.Generic; class GFG{ // Function to calculate height // of the Binary heap with given // the count of the nodes static int height( int N) { return ( int )Math.Ceiling( Math.Log(N + 1) / Math.Log(2)) - 1; } // Function to find the leaf // nodes of binary heap static void findLeafNodes( int []arr, int n) { // Calculate the height of // the complete binary tree int h = height(n); List< int > arrlist = new List< int >(); for ( int i = n - 1; i >= 0; i--) { if (height(i + 1) == h) { arrlist.Add(arr[i]); } else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) { // if the height if h-1, // then there should not // be any child nodes arrlist.Add(arr[i]); } else { break ; } } printLeafNodes(arrlist); } // Function to print the leaf nodes static void printLeafNodes(List< int > arrlist) { for ( int i = arrlist.Count - 1; i >= 0; i--) { Console.Write(arrlist[i] + " " ); } } // Driver Code public static void Main(String[] args) { int []arr = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; findLeafNodes(arr, arr.Length); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation to print # the leaf nodes of a Binary Heap import math def height(N): return math.log(N + 1 ) / / math.log( 2 ) # Function to find the leaf # nodes of binary heap def findLeafNodes(arr, n): # Calculate the height of # the complete binary tree h = height(n) arrlist = [] for i in range (n - 1 , - 1 , - 1 ): if (height(i + 1 ) = = h): arrlist.append(arr[i]) elif (height(i + 1 ) = = h - 1 and n < = (( 2 * i) + 1 )): # if the height if h-1, # then there should not # be any child nodes arrlist.append(arr[i]) else : break prLeafNodes(arrlist) # Function to pr the leaf nodes def prLeafNodes(arrlist): for i in range ( len (arrlist) - 1 , - 1 , - 1 ): print (arrlist[i],end = " " ) # Driver Code arr = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] findLeafNodes(arr, len (arr)) # This code is contributed by shinjanpatra |
Javascript
<script> // JavaScript implementation to print // the leaf nodes of a Binary Heap function height(N){ return Math.floor(Math.log(N + 1) / Math.log(2)) } // Function to find the leaf // nodes of binary heap function findLeafNodes(arr, n){ // Calculate the height of // the complete binary tree let h = height(n) let arrlist = [] for (let i = n - 1;i >= 0 ;i--){ if (height(i + 1) == h) arrlist.push(arr[i]) else if (height(i + 1) == h - 1 && n <= ((2 * i) + 1)) // if the height if h-1, // then there should not // be any child nodes arrlist.push(arr[i]) else break } prLeafNodes(arrlist) } // Function to pr the leaf nodes function prLeafNodes(arrlist){ for (let i = arrlist.length - 1 ; i>=-0; i--) document.write(arrlist[i], " " ) } // Driver Code let arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] findLeafNodes(arr, arr.length) // This code is contributed by shinjanpatra </script> |
6 7 8 9 10
Performance Analysis:
- Time Complexity: O(L), where L is the number of leaf nodes.
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!