Tuesday, January 21, 2025
Google search engine
HomeData Modelling & AIPrint all subarrays with sum in a given range

Print all subarrays with sum in a given range

Given an array arr[] of positive integers and two integers L and R defining the range [L, R]. The task is to print the subarrays having sum in the range L to R.

Examples:  

Input: arr[] = {1, 4, 6}, L = 3, R = 8
Output: {1, 4}, {4}, {6}.
Explanation: All the possible subarrays are the following
{1] with sum 1. 
{1, 4} with sum 5. 
{1, 4, 6} with sum 11.
{4} with sum 4.
{4, 6} with sum 10. 
{6} with sum 6. 
Therefore, subarrays {1, 4}, {4}, {6} are having sum in range [3, 8].

Input: arr[] = {2, 3, 5, 8}, L = 4, R = 13
Output:  {2, 3}, {2, 3, 5}, {3, 5}, {5}, {5, 8}, {8}.

 

Approach: This problem can be solved by doing brute force and checking for each and every possible subarray using two loops. Below is the implementation of the above approach. 

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find subarrays in given range
void subArraySum(int arr[], int n,
                 int leftsum, int rightsum)
{
    int curr_sum, i, j, res = 0;
 
    // Pick a starting point
    for (i = 0; i < n; i++) {
        curr_sum = arr[i];
 
        // Try all subarrays starting with 'i'
        for (j = i + 1; j <= n; j++) {
            if (curr_sum > leftsum
                && curr_sum < rightsum) {
                cout << "{ ";
 
                for (int k = i; k < j; k++)
                    cout << arr[k] << " ";
 
                cout << "}\n";
            }
            if (curr_sum > rightsum || j == n)
                break;
            curr_sum = curr_sum + arr[j];
        }
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    int L = 10, R = 23;
 
    subArraySum(arr, N, L, R);
 
    return 0;
}


Java




// Java code for the above approach
import java.io.*;
 
class GFG
{
   
    // Function to find subarrays in given range
    static void subArraySum(int arr[], int n, int leftsum,
                            int rightsum)
    {
        int curr_sum, i, j, res = 0;
 
        // Pick a starting point
        for (i = 0; i < n; i++) {
            curr_sum = arr[i];
 
            // Try all subarrays starting with 'i'
            for (j = i + 1; j <= n; j++) {
                if (curr_sum > leftsum
                    && curr_sum < rightsum) {
                    System.out.print("{ ");
 
                    for (int k = i; k < j; k++)
                        System.out.print(arr[k] + " ");
 
                    System.out.println("}");
                }
                if (curr_sum > rightsum || j == n)
                    break;
                curr_sum = curr_sum + arr[j];
            }
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 };
        int N = arr.length;
 
        int L = 10, R = 23;
 
        subArraySum(arr, N, L, R);
    }
}
 
// This code is contributed by Potta Lokesh


Python3




# Python program for above approach
 
# Function to find subarrays in given range
def subArraySum (arr, n, leftsum, rightsum):
    res = 0
 
    # Pick a starting point
    for i in range(n):
        curr_sum = arr[i]
 
        # Try all subarrays starting with 'i'
        for j in range(i + 1, n + 1):
            if (curr_sum > leftsum
                and curr_sum < rightsum):
                print("{ ", end="")
 
                for k in range(i, j):
                    print(arr[k], end=" ")
 
                print("}")
            if (curr_sum > rightsum or j == n):
                break
            curr_sum = curr_sum + arr[j]
         
# Driver Code
arr = [15, 2, 4, 8, 9, 5, 10, 23]
N = len(arr)
L = 10
R = 23
subArraySum(arr, N, L, R)
 
# This code is contributed by Saurabh Jaiswal


C#




// C# code for the above approach
using System;
 
class GFG
{
   
    // Function to find subarrays in given range
    static void subArraySum(int []arr, int n, int leftsum,
                            int rightsum)
    {
        int curr_sum, i, j, res = 0;
 
        // Pick a starting point
        for (i = 0; i < n; i++) {
            curr_sum = arr[i];
 
            // Try all subarrays starting with 'i'
            for (j = i + 1; j <= n; j++) {
                if (curr_sum > leftsum
                    && curr_sum < rightsum) {
                    Console.Write("{ ");
 
                    for (int k = i; k < j; k++)
                        Console.Write(arr[k] + " ");
 
                    Console.WriteLine("}");
                }
                if (curr_sum > rightsum || j == n)
                    break;
                curr_sum = curr_sum + arr[j];
            }
        }
    }
 
    // Driver Code
    public static void Main()
    {
        int []arr = { 15, 2, 4, 8, 9, 5, 10, 23 };
        int N = arr.Length;
 
        int L = 10, R = 23;
 
        subArraySum(arr, N, L, R);
    }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
    // JavaScript program for above approach
 
    // Function to find subarrays in given range
    const subArraySum = (arr, n, leftsum, rightsum) => {
        let curr_sum, i, j, res = 0;
 
        // Pick a starting point
        for (i = 0; i < n; i++) {
            curr_sum = arr[i];
 
            // Try all subarrays starting with 'i'
            for (j = i + 1; j <= n; j++) {
                if (curr_sum > leftsum
                    && curr_sum < rightsum) {
                    document.write("{ ");
 
                    for (let k = i; k < j; k++)
                        document.write(`${arr[k]} `);
 
                    document.write("}<br/>");
                }
                if (curr_sum > rightsum || j == n)
                    break;
                curr_sum = curr_sum + arr[j];
            }
        }
    }
 
    // Driver Code
    let arr = [15, 2, 4, 8, 9, 5, 10, 23];
    let N = arr.length;
    let L = 10, R = 23;
    subArraySum(arr, N, L, R);
 
    // This code is contributed by rakeshsahni
 
</script>


Output

{ 15 }
{ 15 2 }
{ 15 2 4 }
{ 2 4 8 }
{ 4 8 }
{ 4 8 9 }
{ 8 9 }
{ 8 9 5 }
{ 9 5 }
{ 5 10 }

Time Complexity: O(N^3)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Wardslaus
Dominic Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments